Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muriel Jaquet is active.

Publication


Featured researches published by Muriel Jaquet.


Nature | 2000

Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice

Mario Pende; Sara C. Kozma; Muriel Jaquet; Viola Oorschot; Rémy Burcelin; Yannick Le Marchand-Brustel; Judith Klumperman; Bernard Thorens; George Thomas

Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic β cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4,5,6,7,8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in β-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.


Developmental Cell | 2012

Mechanotransduction, PROX1, and FOXC2 Cooperate to Control Connexin37 and Calcineurin during Lymphatic-Valve Formation

Amélie Sabine; Yan Agalarov; Hélène Maby-El Hajjami; Muriel Jaquet; René Hägerling; Cathrin Pollmann; Damien Bebber; Anna Pfenniger; Naoyuki Miura; Olivier Dormond; Jean-Marie Calmes; Ralf H. Adams; Taija Mäkinen; Friedemann Kiefer; Brenda R. Kwak; Tatiana V. Petrova

Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress in vitro. Mechanistically, PROX1, FOXC2, and flow coordinately control expression of the gap junction protein connexin37 and activation of calcineurin/NFAT signaling. Connexin37 and calcineurin are required for the assembly and delimitation of lymphatic valve territory during development and for its postnatal maintenance. We propose a model in which regionally increased levels/activation states of transcription factors cooperate with mechanotransduction to induce a discrete cell-signaling pattern and morphogenetic event, such as formation of lymphatic valves. Our results also provide molecular insights into the role of endothelial cell identity in the regulation of vascular mechanotransduction.


Journal of Biological Chemistry | 2000

Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion

Bernard Thorens; Marie-Thérèse Guillam; Friedrich Beermann; Rémy Burcelin; Muriel Jaquet

GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse α to β cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic β cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of α to β cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in β cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.


Journal of Clinical Investigation | 2015

FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature

Amélie Sabine; Esther Bovay; Cansaran Saygili Demir; Wataru Kimura; Muriel Jaquet; Yan Agalarov; Nadine Zangger; Joshua P. Scallan; Werner Graber; Elgin Gulpinar; Brenda R. Kwak; Taija Mäkinen; Ines Martinez-Corral; Sagrario Ortega; Mauro Delorenzi; Friedemann Kiefer; Michael J. Davis; Valentin Djonov; Naoyuki Miura; Tatiana V. Petrova

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.


Cell Reports | 2014

Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development

Baptiste Coxam; Amélie Sabine; Neil I. Bower; Kelly Smith; Cathy Pichol-Thievend; Renae Skoczylas; Jonathan W. Astin; Emmanuelle Frampton; Muriel Jaquet; Philip S. Crosier; Robert G. Parton; Natasha L. Harvey; Tatiana V. Petrova; Stefan Schulte-Merker; Mathias Francois; Benjamin M. Hogan

Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.


Journal of Clinical Investigation | 2015

DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport

Jeremiah Bernier-Latmani; Christophe Cisarovsky; Cansaran Saygili Demir; Marine Bruand; Muriel Jaquet; Suzel Davanture; Simone Ragusa; Stefanie Siegert; Olivier Dormond; Rui Benedito; Freddy Radtke; Sanjiv A. Luther; Tatiana V. Petrova

The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.


Molecular and Cellular Biology | 2013

Phosphorylation Regulates FOXC2-Mediated Transcription in Lymphatic Endothelial Cells

Konstantin I. Ivanov; Yan Agalarov; Leena Valmu; Olga Samuilova; Johanna Liebl; Nawal Houhou; Hélène Maby-El Hajjami; Camilla Norrmén; Muriel Jaquet; Naoyuki Miura; Nadine Zangger; Seppo Ylä-Herttuala; Mauro Delorenzi; Tatiana V. Petrova

ABSTRACT One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.


Journal of Experimental Medicine | 2009

FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1

Camilla Norrmén; Konstantin I. Ivanov; Jianpin Cheng; Nadine Zangger; Mauro Delorenzi; Muriel Jaquet; Naoyuki Miura; Pauli Puolakkainen; Valerie Horsley; Junhao Hu; Hellmut G. Augustin; Seppo Ylä-Herttuala; Kari Alitalo; Tatiana V. Petrova

1. 1. Norrmen, 2. et al . 2009. J. Cell Biol. doi:10.1083/jcb.200901104 [OpenUrl][1][Abstract/FREE Full Text][2] [1]: {openurl}?query=rft_id%253Dinfo%253Adoi%252F10.1083%252Fjcb.200901104%26rft_id%253Dinfo%253Apmid%252F19398761%26rft.genre%253Darticle%26rft_val_fmt%


Journal of Biological Chemistry | 2001

SOCS-1 protein prevents Janus Kinase/STAT-dependent inhibition of beta cell insulin gene transcription and secretion in response to interferon-gamma.

Sandra Cottet; Philippe Dupraz; Fabienne Hamburger; Wanda Dolci; Muriel Jaquet; Bernard Thorens


Diabetes | 2002

cFLIP Protein Prevents Tumor Necrosis Factor-α–Mediated Induction of Caspase-8–Dependent Apoptosis in Insulin-Secreting βTc-Tet Cells

Sandra Cottet; Philippe Dupraz; Fabienne Hamburger; Wanda Dolci; Muriel Jaquet; Bernard Thorens

Collaboration


Dive into the Muriel Jaquet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Zangger

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanda Dolci

University of Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge