Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muriel Perron is active.

Publication


Featured researches published by Muriel Perron.


Cell | 1999

Giant Eyes in Xenopus laevis by Overexpression of XOptx2

Michael E. Zuber; Muriel Perron; Anna Philpott; Anne Bang; William A. Harris

Overexpression of XOptx2, a homeodomain-containing transcription factor expressed in the Xenopus embryonic eye field, results in a dramatic increase in eye size. An XOptx2-Engrailed repressor gives a similar phenotype, while an XOptx2-VP16 activator reduces eye size. XOptx2 stimulates bromodeoxyuridine incorporation, and XOptx2-induced eye enlargement is dependent on cellular proliferation. Moreover, retinoblasts transfected with XOptx2 produce clones of cells approximately twice as large as control clones. Pax6, which does not increase eye size alone, acts synergistically with XOptx2. Our results suggest that XOptx2, in combination with other genes expressed in the eye field, is crucially involved in the proliferative state of retinoblasts and thereby the size of the eye.


BioEssays | 2000

Retinal stem cells in vertebrates.

Muriel Perron; William A. Harris

In fish and amphibia, retinal stem cells located in the periphery of the retina, the ciliary marginal zone (CMZ), produce new neurons in the retina throughout life. In these species, the retina grows to keep pace with the enlarging body. When birds or mammals reach adult proportions, however, their retinas stop growing so there appears to be no need for such a proliferative area with stem cells. It is a surprise, therefore, that recent data suggest that a region similar to the CMZ of fish and amphibia exists in the postnatal chick and the adult mouse.


Development | 2003

A novel function for Hedgehog signalling in retinal pigment epithelium differentiation

Muriel Perron; Sébastien Boy; Marcos A. Amato; Andrea S. Viczian; Katja Koebernick; Tomas Pieler; William A. Harris

Sonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium.


Current Biology | 2008

Sponge Genes Provide New Insight into the Evolutionary Origin of the Neurogenic Circuit

Gemma S. Richards; Elena Simionato; Muriel Perron; Maja Adamska; Michel Vervoort; Bernard M. Degnan

The nerve cell is a eumetazoan (cnidarians and bilaterians) synapomorphy [1]; this cell type is absent in sponges, a more ancient phyletic lineage. Here, we demonstrate that despite lacking neurons, the sponge Amphimedon queenslandica expresses the Notch-Delta signaling system and a proneural basic helix loop helix (bHLH) gene in a manner that resembles the conserved molecular mechanisms of primary neurogenesis in bilaterians. During Amphimedon development, a field of subepithelial cells expresses the Notch receptor, its ligand Delta, and a sponge bHLH gene, AmqbHLH1. Cells that migrate out of this field express AmqDelta1 and give rise to putative sensory cells that populate the larval epithelium. Phylogenetic analysis suggests that AmqbHLH1 is descendent from a single ancestral bHLH gene that later duplicated to produce the atonal/neurogenin-related bHLH gene families, which include most bilaterian proneural genes [2]. By way of functional studies in Xenopus and Drosophila, we demonstrate that AmqbHLH1 has a strong proneural activity in both species with properties displayed by both neurogenin and atonal genes. From these results, we infer that the bilaterian neurogenic circuit, comprising proneural atonal-related bHLH genes coupled with Notch-Delta signaling, was functional in the very first metazoans and was used to generate an ancient sensory cell type.


Cellular and Molecular Life Sciences | 2000

Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix-loop-helix transcription factors

Muriel Perron; William A. Harris

Abstract. The retina is an excellent system in which to study neural cell fate decision mechanisms. It is an organized laminated structure with a limited array of cell types. During the last 5 years, experiments that perturb normal gene expression have highlighted some molecular mechanisms involved in cellular fate choice in the retina. By controlling when a retinoblast is allowed to differentiate, Delta-Notch signaling plays a critical role in the generation of neuronal diversity in the vertebrate retina. When cells are released from the inhibition mediated by the Delta-Notch pathway, basic helix-loop-helix (bHLH) transcription factors act as intrinsic factors that bias neuroblasts towards particular fates. In this review, we present an overview of the data leading to these conclusions on the role of the Delta-Notch pathway and the bHLH proteins on cell fate decisions during vertebrate retinogenesis.


Cell Cycle | 2007

A General Role of Hedgehog in the Regulation of Proliferation

Michalis Agathocleous; Morgane Locker; William A. Harris; Muriel Perron

The Hedgehog (Hh) pathway regulates proliferation in a variety of tissues, however its specific effects on the cell cycle are unclear. During retinal proliferation in particular, the role of Hh has been controversial, with studies variably suggesting a stimulatory or an inhibitory effect on proliferation. Our recent data provide an underlying mechanism, which reconciles these different views. We showed that Hh signaling in the retina accelerates the G1 and G2 phases of the cell cycle and then pushes these rapidly dividing cells out of the cell cycle prematurely. From this and other evidence, we propose that Hh converts quiescent retinal stem cells into fast-cycling transient amplifying progenitors that are closer to cell cycle exit and differentiation. This is, we suggest, likely to be a general role of Hh in the nervous system and other tissues. This function of Hh in cell cycle kinetics and cell cycle exit may have implications for tumorigenesis and brain evolution.


BMC Developmental Biology | 2007

Ptf1a triggers GABAergic neuronal cell fates in the retina

Jean-Philippe Dullin; Morgane Locker; Mélodie Robach; Kristine A. Henningfeld; Karine Parain; Solomon Afelik; Tomas Pieler; Muriel Perron

BackgroundIn recent years, considerable knowledge has been gained on the molecular mechanisms underlying retinal cell fate specification. However, hitherto studies focused primarily on the six major retinal cell classes (five types of neurons of one type of glial cell), and paid little attention to the specification of different neuronal subtypes within the same cell class. In particular, the molecular machinery governing the specification of the two most abundant neurotransmitter phenotypes in the retina, GABAergic and glutamatergic, is largely unknown. In the spinal cord and cerebellum, the transcription factor Ptf1a is essential for GABAergic neuron production. In the mouse retina, Ptf1a has been shown to be involved in horizontal and most amacrine neurons differentiation.ResultsIn this study, we examined the distribution of neurotransmitter subtypes following Ptf1a gain and loss of function in the Xenopus retina. We found cell-autonomous dramatic switches between GABAergic and glutamatergic neuron production, concomitant with profound defects in the genesis of amacrine and horizontal cells, which are mainly GABAergic. Therefore, we investigated whether Ptf1a promotes the fate of these two cell types or acts directly as a GABAergic subtype determination factor. In ectodermal explant assays, Ptf1a was found to be a potent inducer of the GABAergic subtype. Moreover, clonal analysis in the retina revealed that Ptf1a overexpression leads to an increased ratio of GABAergic subtypes among the whole amacrine and horizontal cell population, highlighting its instructive capacity to promote this specific subtype of inhibitory neurons. Finally, we also found that within bipolar cells, which are typically glutamatergic interneurons, Ptf1a is able to trigger a GABAergic fate.ConclusionAltogether, our results reveal for the first time in the retina a major player in the GABAergic versus glutamatergic cell specification genetic pathway.


Stem Cells | 2008

Canonical Wnt Signaling Controls Proliferation of Retinal Stem/Progenitor Cells in Postembryonic Xenopus Eyes

Tinneke Denayer; Morgane Locker; Caroline Borday; Tom Deroo; Sylvie Janssens; Andreas Hecht; Frans van Roy; Muriel Perron; Kris Vleminckx

Vertebrate retinal stem cells, which reside quiescently within the ciliary margin, may offer a possibility for treatment of degenerative retinopathies. The highly proliferative retinal precursor cells in Xenopus eyes are confined to the most peripheral region, called the ciliary marginal zone (CMZ). Although the canonical Wnt pathway has been implicated in the developing retina of different species, little is known about its involvement in postembryonic retinas. Using a green fluorescent protein‐based Wnt‐responsive reporter, we show that in transgenic Xenopus tadpoles, the canonical Wnt signaling is activated in the postembryonic CMZ. To further investigate the functional implications of this, we generated transgenic, hormone‐inducible canonical Wnt pathway activating and repressing systems, which are directed to specifically intersect at the nuclear endpoint of transcriptional Wnt target gene activation. We found that postembryonic induction of the canonical Wnt pathway in transgenic retinas resulted in increased proliferation in the CMZ compartment. This is most likely due to delayed cell cycle exit, as inferred from a pulse‐chase experiment on 5‐bromo‐2′‐deoxyuridine‐labeled retinal precursors. Conversely, repression of the canonical Wnt pathway inhibited proliferation of CMZ cells. Neither activation nor repression of the Wnt pathway affected the differentiated cells in the central retina. We conclude that even at postembryonic stages, the canonical Wnt signaling pathway continues to have a major function in promoting proliferation and maintaining retinal stem cells. These findings may contribute to the eventual design of vertebrate, stem cell‐based retinal therapies.


Development | 2012

Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation

Caroline Borday; Pauline Cabochette; Karine Parain; Nicolas Mazurier; Sylvie Janssens; Hong Thi Tran; Belaid Sekkali; Odile Bronchain; Kris Vleminckx; Morgane Locker; Muriel Perron

Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/β-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.


Mechanisms of Development | 1999

Xenopus elav-like genes are differentially expressed during neurogenesis.

Muriel Perron; Marie-Pierre Furrer; Maurice Wegnez; Laurent Théodore

In Xenopus, three neural-specific elav-like genes (ELGs) have been identified, elrB/Xel-1, elrC and elrD. With the aim to highlight possible differences in the regulation of these genes, we compared their expression patterns during development. We had previously shown that elrB is expressed from the early tailbud stage onwards, in both the central and peripheral nervous system. Here we show that both elrC and elrD are expressed earlier than elrB in the developing neural tube and the cranial ganglia, with different temporal specificities. Double in situ hybridizations on brain cross-sections allowed us to define precisely the expression domains of elrB, elrC and elrD in the brain at the tailbud stage. What emerges from this study is a differential distribution of ELGs transcripts in the hindbrain. Also, double labeling with a motor neuron marker shows that in stage 41 tailbud embryos, elrD remains strongly expressed in motor neurons whereas elrC is mostly expressed in non-motor neuron cells.

Collaboration


Dive into the Muriel Perron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice Wegnez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Bellefroid

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge