Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murielle Ålund is active.

Publication


Featured researches published by Murielle Ålund.


Molecular Ecology Resources | 2014

Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single‐nucleotide polymorphism array

Takeshi Kawakami; Niclas Backström; Reto Burri; Arild Husby; Pall Olason; Amber M. Rice; Murielle Ålund; Anna Qvarnström; Hans Ellegren

With the access to draft genome sequence assemblies and whole‐genome resequencing data from population samples, molecular ecology studies will be able to take truly genome‐wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single‐nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10‐fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later‐generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.


Biology Letters | 2013

Low fertility of wild hybrid male flycatchers despite recent divergence.

Murielle Ålund; Simone Immler; Amber M. Rice; Anna Qvarnström

Postzygotic isolation may be important for maintaining species boundaries, particularly when premating barriers are incomplete. Little is known about the course of events leading from minor environmental mismatches affecting hybrid fitness to severe genetic incompatibilities causing sterility or inviability. We investigated whether reduced reproductive success of hybrid males was caused by suboptimal sperm traits or by more severe genetic incompatibilities in a hybrid zone of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) on the island of Öland, Sweden. About 4 per cent hybridization is observed in this population and all female hybrids are sterile. We found no sperm in the ejaculates of most sampled hybrid males, and sperm with abnormal morphology in two hybrids. Furthermore, none of the hybrids sired any offspring because of high levels of hatching failure and extra-pair paternity in their nests. These results from a natural hybrid zone suggest that the spermatogenesis of hybrid males may become disrupted despite little genetic divergence between the parental species.


Evolutionary Applications | 2016

Climate adaptation and speciation: particular focus on reproductive barriers in Ficedula flycatchers

Anna Qvarnström; Murielle Ålund; S. Eryn McFarlane; Päivi M. Sirkiä

Climate adaptation is surprisingly rarely reported as a cause for the build‐up of reproductive isolation between diverging populations. In this review, we summarize evidence for effects of climate adaptation on pre‐ and postzygotic isolation between emerging species with a particular focus on pied (Ficedula hypoleuca) and collared (Ficedula albicollis) flycatchers as a model for research on speciation. Effects of climate adaptation on prezygotic isolation or extrinsic selection against hybrids have been documented in several taxa, but the combined action of climate adaptation and sexual selection is particularly well explored in Ficedula flycatchers. There is a general lack of evidence for divergent climate adaptation causing intrinsic postzygotic isolation. However, we argue that the profound effects of divergence in climate adaptation on the whole biochemical machinery of organisms and hence many underlying genes should increase the likelihood of genetic incompatibilities arising as side effects. Fast temperature‐dependent co‐evolution between mitochondrial and nuclear genomes may be particularly likely to lead to hybrid sterility. Thus, how climate adaptation relates to reproductive isolation is best explored in relation to fast‐evolving barriers to gene flow, while more research on later stages of divergence is needed to achieve a complete understanding of climate‐driven speciation.


Evolution | 2016

Females discriminate against heterospecific sperm in a natural hybrid zone.

Emily R. A. Cramer; Murielle Ålund; S. Eryn McFarlane; Arild Johnsen; Anna Qvarnström

When hybridization is maladaptive, species‐specific mate preferences are selectively favored, but low mate availability may constrain species‐assortative pairing. Females paired to heterospecifics may then benefit by copulating with multiple males and subsequently favoring sperm of conspecifics. Whether such mechanisms for biasing paternity toward conspecifics act as important reproductive barriers in socially monogamous vertebrate species remains to be determined. We use a combination of long‐term breeding records from a natural hybrid zone between collared and pied flycatchers (Ficedula albicollis and F. hypoleuca), and an in vitro experiment comparing conspecific and heterospecific sperm performance in female reproductive tract fluid, to evaluate the potential significance of female cryptic choice. We show that the females most at risk of hybridizing (pied flycatchers) frequently copulate with multiple males and are able to inhibit heterospecific sperm performance. The negative effect on heterospecific sperm performance was strongest in pied flycatcher females that were most likely to have been previously exposed to collared flycatcher sperm. We thus demonstrate that a reproductive barrier acts after copulation but before fertilization in a socially monogamous vertebrate. While the evolutionary history of this barrier is unknown, our results imply that there is opportunity for it to be accentuated via a reinforcement‐like process.


Evolution | 2016

Competition-driven build-up of habitat isolation and selection favoring modified dispersal patterns in a young avian hybrid zone.

Jakub Rybinski; Päivi M. Sirkiä; S. Eryn McFarlane; Niclas Vallin; David Wheatcroft; Murielle Ålund; Anna Qvarnström

Competition‐driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on‐going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition‐driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future “voluntarily” altered immigration patterns and possibly strengthened habitat isolation through reinforcement.


PLOS ONE | 2016

Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers

S. Eryn McFarlane; Päivi M. Sirkiä; Murielle Ålund; Anna Qvarnström

Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions.


Evolution | 2018

Climate-driven build-up of temporal isolation within a recently formed avian hybrid zone: CLIMATE-DRIVEN TEMPORAL ISOLATION

Päivi M. Sirkiä; S. Eryn McFarlane; William Jones; David Wheatcroft; Murielle Ålund; Jakub Rybinski; Anna Qvarnström

Divergence in the onset of reproduction can act as an important source of reproductive isolation (i.e., allochronic isolation) between co‐occurring young species, but evidence for the evolutionary processes leading to such divergence is often indirect. While advancing spring seasons strongly affect the onset of reproduction in many taxa, it remains largely unexplored whether contemporary spring advancement directly affects allochronic isolation between young species. We examined how increasing spring temperatures affected onset of reproduction and thereby hybridization between pied and collared flycatchers (Ficedula spp.) across habitat types in a young secondary contact zone. We found that both species have advanced their timing of breeding in 14 years. However, selection on pied flycatchers to breed earlier was weaker, resulting in a slower response to advancing springs compared to collared flycatchers and thereby build‐up of allochronic isolation between the species. We argue that a preadaptation to a broader niche use (diet) of pied flycatchers explains the slower response to raising spring temperature, but that reduced risk to hybridize may contribute to further divergence in the onset of breeding in the future. Our results show that minor differences in the response to environmental change of co‐occurring closely related species can quickly cause allochronic isolation.


Ecology and Evolution | 2018

Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers

S. Eryn McFarlane; Murielle Ålund; Päivi M. Sirkiä; Anna Qvarnström

Abstract Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.


Behavioral Ecology | 2018

Optimal sperm length for high siring success depends on forehead patch size in collared flycatchers

Murielle Ålund; Siri Persson Schmiterlöw; S. Eryn McFarlane; Anna Qvarnström

Dominance over rivals, sexual attractiveness, and highly efficient ejaculates are 3 important contributors of male fertilization success but theories about how primary and secondary sexual characte ...


PLOS ONE | 2017

Correction: Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers

S. Eryn McFarlane; Päivi M. Sirkiä; Murielle Ålund; Anna Qvarnström

[This corrects the article DOI: 10.1371/journal.pone.0161547.].

Collaboration


Dive into the Murielle Ålund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Päivi M. Sirkiä

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luohao Xu

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Arild Johnsen

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge