Murielle Rocancourt
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Murielle Rocancourt.
Nature Cell Biology | 2011
Daphné Dambournet; Mickaël Machicoane; Laurent Chesneau; Martin Sachse; Murielle Rocancourt; Ahmed El Marjou; Etienne Formstecher; Rémi Salomon; Bruno Goud; Arnaud Echard
Abscission is the least understood step of cytokinesis. It consists of the final cut of the intercellular bridge connecting the sister cells at the end of mitosis, and is thought to involve membrane trafficking as well as lipid and cytoskeleton remodelling. We previously identified the Rab35 GTPase as a regulator of a fast recycling endocytic pathway that is essential for post-furrowing cytokinesis stages. Here, we report that the phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) 5-phosphatase OCRL, which is mutated in Lowe syndrome patients, is an effector of the Rab35 GTPase in cytokinesis abscission. GTP-bound (active) Rab35 directly interacts with OCRL and controls its localization at the intercellular bridge. Depletion of Rab35 or OCRL inhibits cytokinesis abscission and is associated with local abnormal PtdIns(4,5)P2 and F-actin accumulation in the intercellular bridge. These division defects are also found in cell lines derived from Lowe patients and can be corrected by the addition of low doses of F-actin depolymerization drugs. Our data demonstrate that PtdIns(4,5)P2 hydrolysis is important for normal cytokinesis abscission to locally remodel the F-actin cytoskeleton in the intercellular bridge. They also reveal an unexpected role for the phosphatase OCRL in cell division and shed new light on the pleiotropic phenotypes associated with Lowe disease.
Nature Communications | 2017
Stéphane Frémont; Hussein Hammich; Jian Bai; Hugo Wioland; Kerstin Klinkert; Murielle Rocancourt; Carlos Kikuti; David Stroebel; Guillaume Romet-Lemonne; Olena Pylypenko; Anne Houdusse; Arnaud Echard
Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division.
Microbial Pathogenesis | 1991
Nicole Guiso; Marek Szatanik; Murielle Rocancourt
Bordetella pertussis synthesizes several factors. It has been suggested that one of these factors, the adenylate cyclase-hemolysin (AC-Hly), directly penetrates target cells and impairs their normal functions by elevating intracellular cAMP. In the present study, we show that active immunization with purified B. pertussis AC-Hly or AC (a fragment of the AC-Hly molecule carrying only the adenylate cyclase activity but no toxin activity in vitro) protects mice against B. pertussis intranasal infection. Immunization with AC-Hly or AC significantly shortens the period of bacterial colonization of the mouse respiratory tract. Furthermore, B. parapertussis AC-Hly or AC are also protective antigens against B. parapertussis colonization; their protective activities are equivalent to that of the whole-cell vaccine. These results suggest that AC-Hly may play an important role in Bordetella pathogenesis, in a murine model. If this factor plays a similar role in the human disease, its use as a protective antigen could reduce not only the incidence of the disease, but also the asymptomatic human reservoir by limiting bacterial carriage.
Microbial Pathogenesis | 1989
Nicole Guiso; Murielle Rocancourt; Marek Szatanik; Jean-Michel Alonso
Bordetella pertussis and Bordetella parapertussis are both causative agents of whooping cough outbreaks. Although not expressing the pertussis toxin, B. parapertussis induces, in a murine model, an acute hemorrhagic edematous alveolitis, similar to that observed with B. pertussis. These data suggest that the pertussis toxin may only play an accessory role in the acute pulmonary syndrome observed during Bordetella infection. Both with B. pertussis and B. parapertussis, the ability to induce lethal pulmonary lesions is associated with enhanced in vitro adenylate cyclase expression and activity. We also demonstrate that passive immunization with specific anti-B. pertussis adenylate cyclase antibodies or active immunization with purified B. pertussis secreted adenylate cyclase protect mice against a lethal respiratory challenge with B. pertussis or B. parapertussis. Our results suggest that adenylate cyclase might be the primary cytotoxin responsible for mouse pulmonary lesions during respiratory tract infection with B. pertussis or with the related species B. parapertussis and is a protective antigen of B. pertussis.
Journal of Cell Biology | 2014
Mickaël Machicoane; Cristina A. de Frutos; Jenny Fink; Murielle Rocancourt; Yannis Lombardi; Sonia Garel; Matthieu Piel; Arnaud Echard
ERM activation by SLK kinase promotes polarized association at the mitotic cortex of LGN and NuMA, a necessary step in proper spindle orientation.
Nature Communications | 2016
Kerstin Klinkert; Murielle Rocancourt; Anne Houdusse; Arnaud Echard
Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts.
Molecular Genetics and Genomics | 1986
Pierre Béguin; Murielle Rocancourt; Marie-Christine Chebrou; Jean-Paul Aubert
SummaryThe size and location of the 5′ end of celA mRNA encoding endoglucanase A of Clostridium thermocellum were investigated in C. thermocellum and in an Escherichia coli clone that carries and expresses the celA gene. In E. coli, the 5′ end of celA mRNA was located 134 bp upstream from the initiation codon and 10 bp downstream from a sequence homologous to the consensus sequence of E. coli σ70 and Bacillus subtilis σ43 (formerly σ55) vegetative promoters. In C. thermocellum, a minor transcript appeared to start from the same site, but a major species started 57 bp upstream from the coding sequence. The 5′ end of this mRNA was preceded by a sequence reminiscent of B. subtilis σ28 vegetative promoters. In both organisms, the size of the transcript suggested that celA belongs to a monocistronic unit of transcription.
Nature Communications | 2017
Nicolas Taulet; Benjamin Vitre; Christelle Anguille; Audrey Douanier; Murielle Rocancourt; Michael Taschner; Esben Lorentzen; Arnaud Echard; Benedicte Delaval
Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning.Cytokinesis relies on central spindle organization and provides a spatial landmark for lumen formation. Here, the authors show that intraflagellar transport proteins are required for the localization of the cytokinetic regulator Aurora B and subsequent cleavage furrow ingression and lumen positioning.
Current Biology | 2016
Clothilde Cauvin; Morgane Rosendale; Neetu Gupta-Rossi; Murielle Rocancourt; Pierre Larraufie; Rémi Salomon; David Perrais; Arnaud Echard
Archive | 1988
Nicole Guiso-Maclouf; Colette Brezin; Murielle Rocancourt; Jean-Michel Alonso