Murli Manohar
Central Drug Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Murli Manohar.
Journal of Nutritional Biochemistry | 2013
Murli Manohar; I. Fatima; Ruchi Saxena; Vishal Chandra; Pushp L. Sankhwar; Anila Dwivedi
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit carcinogenesis of various tumor types. The aim of this study was to elucidate the antiproliferative potential of EGCG and its mechanism in human endometrial cancer cells (Ishikawa cells) and primary endometrial adenocarcinoma cells. The antiproliferative effect of EGCG was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Reactive oxygen species (ROS) generation was measured by using 2,7-dichlorofluorescin diacetate dye. Expression of mitogen-activated protein kinases, proliferation and apoptotic markers were measured by immunoblot analysis. EGCG was found to inhibit proliferation in Ishikawa as well as in primary endometrial adenocarcinoma cells and effectively down-regulated the expression of proliferation markers, i.e., estrogen receptor α, progesterone receptor, proliferating cell nuclear antigen and cyclin D1. EGCG also decreased the activation of ERK and downstream transcription factors fos and jun. EGCG caused apoptotic cell death accompanied by up-regulation of proapoptotic Bax and down-regulation of antiapoptotic protein Bcl2. EGCG induced the cleavage of caspase-3 and poly(ADP-ribose) polymerase, the hallmark of apoptosis. EGCG significantly induced the ROS generation as well as p38 activation in Ishikawa cells, which appeared to be a critical mediator in EGCG-induced apoptosis. The apoptotic effect of EGCG and the p38 activation were blocked by pretreatment of cells with the ROS scavenger N-acetylcysteine. EGCG reduced the glutathione levels, which might be responsible for enhanced ROS generation causing oxidative stress in endometrial cancer cells. Taken together, these results suggest that EGCG inhibits cellular proliferation via inhibiting ERK activation and inducing apoptosis via ROS generation and p38 activation in endometrial carcinoma cells.
World Journal of Gastrointestinal Pharmacology and Therapeutics | 2017
Murli Manohar; Alok Kumar Verma; Sathisha Upparahalli Venkateshaiah; Nathan L Sanders; Anil K. Mishra
Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.
PLOS ONE | 2013
Ruchi Saxena; Vishal Chandra; Murli Manohar; Kanchan Hajela; Utsab Debnath; Yenamandra S. Prabhakar; Karan Singh Saini; Rituraj Konwar; Sandeep Kumar; Kaling Megu; Bal Gangadhar Roy; Anila Dwivedi
Inhibition of epidermal growth factor receptor (EGFR) signaling is considered to be a promising treatment strategy for estrogen receptor (ER)-negative breast tumors. We have investigated here the anti-breast cancer properties of a novel anti-proliferative benzopyran compound namely, 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) in ER- negative and EGFR- overexpressing breast cancer cells. The benzopyran compound selectively inhibited the EGF-induced growth of MDA-MB 231 cells and ER-negative primary breast cancer cell culture. The compound significantly reduced tumor growth in xenograft of MDA-MB 231 cells in nude mice. The compound displayed better binding affinity for EGFR than inhibitor AG1478 as demonstrated by molecular docking studies. CDRI-85/287 significantly inhibited the activation of EGFR and downstream effectors MEK/Erk and PI-3-K/Akt. Subsequent inhibition of AP-1 promoter activity resulted in decreased transcription activation and expression of c-fos and c-jun. Dephosphorylation of downstream effectors FOXO-3a and NF-κB led to increased expression of p27 and decreased expression of cyclin D1 which was responsible for decreased phosphorylation of Rb and prevented the transcription of E2F- dependent genes involved in cell cycle progression from G1/S phase. The compound induced apoptosis via mitochondrial pathway and it also inhibited EGF-induced invasion of MDA-MB 231 cells as evidenced by decreased activity of MMP-9 and expression of CTGF. These results indicate that benzopyran compound CDRI-85/287 could constitute a powerful new chemotherapeutic agent against ER-negative and EGFR over-expressing breast tumors.
Steroids | 2012
Swati Parihar; Atul Gupta; Amit K. Chaturvedi; Jyoti Agarwal; Suaib Luqman; Bendangla Changkija; Murli Manohar; Debabrata Chanda; Chandan S. Chanotiya; Karuna Shanker; Anila Dwivedi; Rituraj Konwar; Arvind S. Negi
Phenstatin analogues were synthesized on steroidal framework, for selective targeting of breast cancer cells. These analogues were evaluated for anticancer efficacy against breast cancer cell lines. Analogues 12 and 19 exhibited significant anticancer activity against MCF-7, hormone dependent breast cancer cell line. While analogues 10-14 exhibited significant anticancer activity against MDA-MB-231, hormone independent breast cancer cell line. Compound 10 showed significant oestrogen antagonistic activities with low agonistic activity in in vivo rat model. These analogues also retain tubulin polymerization inhibition activity. The most active analogue 10 was found to be non-toxic in Swiss albino mice up to 300 mg/kg dose. Gallic acid based phenstatin analogues may further be optimized as selective anti-breast cancer agents.
Molecular and Cellular Endocrinology | 2012
I. Fatima; Vishal Chandra; Ruchi Saxena; Murli Manohar; Y. Sanghani; Kanchan Hajela; Mahendra Pal Singh Negi; Pushplata Sankhwar; S.K. Jain; Anila Dwivedi
OBJECTIVESnThe present study was undertaken to explore the mechanism of anti-proliferative action of benzopyran compound D1 (2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzopyran) and its hydroxy-(D2) and methoxy-(D3) derivatives in Ishikawa and human primary endometrial adenocarcinoma cells.nnnMETHODSnTranscriptional activation assays were performed using luciferase reporter system and cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The stage of cell cycle was determined by flow-cytometry and real time analysis of cyclinE1 and cdc2 genes. The apoptotic effects were measured by AnnexinV/PI staining and TUNEL. The expression of PCNA, cyclinD1, pAkt, XIAP, cleaved caspase-9, -3, PARP, Bax and Bcl2 were determined by immunoblotting. The caspase-3 activity and mitochondrial membrane potential were measured by colorimetric assay.nnnRESULTSnAll three compounds inhibited E(2)-induced ERE- and AP-1-mediated transactivation and proliferation in endometrial adenocarcinoma cells dose-dependently. Compound D1 caused the arrest of cells in the G(2) phase while D2 and D3 caused arrest in G(1) phase of the cell cycle. All compounds interfered with Akt activation, decreased XIAP expression leading to an increased cleavage of caspase-9, -3, PARP, increased Bax/Bcl2 ratio and caspase-3 activity.nnnCONCLUSIONnFindings suggest that benzopyran derivatives inhibit cellular proliferation via modulating ER-dependent classical and non-classical signaling mechanisms, interfere with Akt activation and induce apoptosis via intrinsic pathway in endometrial adenocarcinoma cells.
The Journal of Steroid Biochemistry and Molecular Biology | 2015
Pooja Popli; Vijay Kumar Sirohi; Murli Manohar; Vinay Shukla; Jyoti Bala Kaushal; Kanchan Gupta; Anila Dwivedi
The oviduct plays a crucial role in female reproduction by regulating gamete transport, providing a specific microenvironment for fertilization and early embryonic development. Cyclooxygenase (COX)-derived prostaglandins play essential role in carrying out these oviduct-specific functions. Estrogen upregulates COX-2 expression in rat oviduct; however, the mechanisms responsible for regulation of COX-2 expression in rat oviductal epithelial cells (OECs) remain unclear. In the present study, we proposed that estrogen induces COX-2 expression via G-protein coupled receptor i.e., GPR30 in OECs. To investigate this hypothesis, we examined the effects of E2-BSA, ICI 182,780, GPR30 agonist and GPR30 antagonist on COX-2 expression and explored potential signaling pathway leading to COX-2 expression. Co-localization experiments revealed GPR30 to be primarily located in the peri-nuclear space, which was also the site of E2-BSA-fluorescein isothiocyanate (E2-BSA-FITC) binding. The E2-BSA induced-COX-2 and prostaglandin release were subjected to regulation by both EGFR and PI3K signaling as inhibitors of c-Src kinase (PP2), EGFR (EGFR inhibitor) and PI-3 kinase (LY294002) attenuated E2-BSA mediated effect. These results suggest that EGFR transactivation leading to activation of PI-3K/Akt pathway participates in COX-2 expression in rat OECs. Interestingly, E2-BSA induced COX-2 expression and subsequent prostaglandin release were abolished by NF-κB inhibitor. In addition, E2-BSA induced the nuclear translocation of p65-NF-κB and up-regulated the NF-κB promoter activity in rat OECs. Taken together, results demonstrated that E2-BSA induced the COX-2 expression and consequent PGE2 and PGF2α release in rat OECs. These effects are mediated through GPR30-derived EGFR transactivation and PI-3K/Akt cascade leading to NF-κB activation.
PLOS ONE | 2014
Murli Manohar; Huma Khan; Vijay Kumar Sirohi; Vinita Das; Anjoo Agarwal; Amita Pandey; Waseem Ahmad Siddiqui; Anila Dwivedi
Background Compromised receptivity of the endometrium is a major cause of unexplained infertility, implantation failure and subclinical pregnancy loss. In order to investigate the changes in endometrial protein profile as a cause of unexplained infertility, the current study was undertaken to analyze the differentially expressed proteins of endometrium from early-secretory (LH+2) to mid-secretory phase (LH+7), in women with unexplained infertility. Methods 2-D gel electrophoresis was performed to analyze the proteomic changes between early- (nu200a=u200a8) and mid-secretory (nu200a=u200a8) phase endometrium of women with unexplained infertility. The differentially expressed protein spots were identified by LC-MS analysis and validated by immunoblotting and immuno-histochemical analysis in early- (nu200a=u200a4) and mid-secretory (nu200a=u200a4) phase endometrium of infertile women. Validated proteins were also analyzed in early- (nu200a=u200a4) and mid-secretory (nu200a=u200a4) phase endometrium of fertile women. Results Nine proteins were found to be differentially expressed between early- and mid- secretory phases of endometrium of infertile women. The expression of Ras-related protein Rap-1b, Protein disulfide isomerase A3, Apolipoprotein-A1 (Apo-A1), Cofilin-1 and RAN GTP-binding nuclear protein (Ran) were found to be significantly increased, whereas, Tubulin polymerization promoting protein family member 3, Superoxide dismutase [Cu-Zn], Sorcin, and Proteasome subunit alpha type-5 were significantly decreased in mid- secretory phase endometrium of infertile women as compared to early-secretory phase endometrium of infertile women. Validation of 4 proteins viz. Sorcin, Cofilin-1, Apo-A1 and Ran were performed in separate endometrial biopsy samples from infertile women. The up-regulated expression of Sorcin and down-regulated expression of Cofilin-1 and Apolipoprotein-A1, were observed in mid-secretory phase as compared to early-secretory phase in case of fertile women. Conclusions De-regulation of the expression of Sorcin, Cofilin-1, Apo-A1 and Ran, during early- to mid-secretory phase may have physiological significance and it may be one of the causes for altered differentiation and/or maturation of endometrium, in women with unexplained infertility.
Journal of Nutritional Biochemistry | 2017
Vijay Kumar Sirohi; Pooja Popli; Pushplata Sankhwar; Jyoti Bala Kaushal; Kanchan Gupta; Murli Manohar; Anila Dwivedi
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells.
Bioconjugate Chemistry | 2016
Kanchan Chauhan; Ashutosh Arun; Saurabh Singh; Murli Manohar; Krishna Chuttani; Rituraj Konwar; Anila Dwivedi; Ravi Soni; Ajai K. Singh; Anil K. Mishra; Anupama Datta
The synthesis of estradiol based bivalent ligand [(EST)2DT] is reported and its potential for targeted imaging and therapy of ER(+) tumors has been evaluated. For the purpose, ethinylestradiol was functionalized with an azidoethylamine moiety via click chemistry. The resultant derivative was reacted in a bivalent mode with DTPA-dianhydride to form the multicoordinate chelating agent, (EST)2DT which displayed capability to bind (99m)Tc. The radiolabeled complex, (99m)Tc-(EST)2DT was obtained in >99% radiochemical purity and 20-48 GBq/μmol of specific activity. RBA assay revealed ∼15% binding with estrogen receptor. Evaluation of ligand on ER(+)-cell line (MCF-7) suggested enhanced and ER-mediated uptake. In vivo assays displayed early tracer accumulation in MCF-7 xenografts with tumor to muscle ratio ∼6 in 2 h and negligible uptakes in nontargeted organs. MTT assay performed on ER(+) and ER(-) cell lines displayed selective inhibition of ER(+) cancer cell growth with IC50 = 14.3 μM which was comparable to tamoxifen. The anticancer activity of the ligand is possibly due to the increase in ERβ and suppression of ERα protein levels in gene transcription. The studies reveal the potential of (EST)2DT as diagnostic imaging agent with the additional benefits in therapy.
Journal of Nanoparticle Research | 2017
Gulshan Singh; Murli Manohar; Anthony Ayodeji Adegoke; Thor Axel Stenström; Rishi Shanker
AbstractThe lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1–100xa0nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for thexa0specific detection of targeted pathogens.n Graphical abstractPathogen detection: culture plate to aptamer nanotechnology