Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murong Lang is active.

Publication


Featured researches published by Murong Lang.


Nature Materials | 2014

Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure

Yabin Fan; Pramey Upadhyaya; Xufeng Kou; Murong Lang; So Takei; Zhenxing Wang; Jianshi Tang; Liang He; Li-Te Chang; Mohammad Montazeri; Guoqiang Yu; Wanjun Jiang; Tianxiao Nie; Robert N. Schwartz; Yaroslav Tserkovnyak; Kang L. Wang

Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great attention to spin torques arising from large spin-orbit coupling (SOC). Given the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. Here we demonstrate experimentally the magnetization switching through giant SOT induced by an in-plane current in a chromium-doped TI bilayer heterostructure. The critical current density required for switching is below 8.9 × 10(4) A cm(-2) at 1.9 K. Moreover, the SOT is calibrated by measuring the effective spin-orbit field using second-harmonic methods. The effective field to current ratio and the spin-Hall angle tangent are almost three orders of magnitude larger than those reported for HMFHs. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices.


Nature Nanotechnology | 2014

Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields

Guoqiang Yu; Pramey Upadhyaya; Yabin Fan; Juan G. Alzate; Wanjun Jiang; Kin L. Wong; So Takei; Scott A. Bender; Li Te Chang; Ying Jiang; Murong Lang; Jianshi Tang; Yong Wang; Yaroslav Tserkovnyak; Pedram Khalili Amiri; Kang L. Wang

Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.


Physical Review Letters | 2014

Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit.

Xufeng Kou; Shih-Ting Guo; Yabin Fan; Lei Pan; Murong Lang; Ying Jiang; Qiming Shao; Tianxiao Nie; Koichi Murata; Jianshi Tang; Yong Wang; Liang He; Ting-Kuo Lee; Wei-Li Lee; Kang L. Wang

We investigate the quantum anomalous Hall effect (QAHE) and related chiral transport in the millimeter-size (Cr(0.12)Bi(0.26)Sb(0.62))₂Te₃ films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e²/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral edge conduction is manifested by the nonlocal transport measurements. In contrast to the 2D hybridized thin film, an additional weakly field-dependent longitudinal resistance is observed in the ten-quintuple-layer film, suggesting the influence of the film thickness on the dissipative edge channel in the QAHE regime. The extension of the QAHE into the three-dimensional thickness region addresses the universality of this quantum transport phenomenon and motivates the exploration of new QAHE phases with tunable Chern numbers. In addition, the observation of scale-invariant dissipationless chiral propagation on a macroscopic scale makes a major stride towards ideal low-power interconnect applications.


Nano Letters | 2012

Gate-Controlled Surface Conduction in Na-Doped Bi2Te3 Topological Insulator Nanoplates

Yong Wang; Faxian Xiu; Lina Cheng; Liang He; Murong Lang; Jianshi Tang; Xufeng Kou; Xinxin Yu; Xiaowei Jiang; Zhigang Chen; Jin Zou; Kang L. Wang

Exploring exciting and exotic physics, scientists are pursuing practical device applications for topological insulators. The Dirac-like surface states in topological insulators are protected by the time-reversal symmetry, which naturally forbids backscattering events during the carrier transport process, and therefore offers promising applications in dissipationless spintronic devices. Although considerable efforts have been devoted to controlling their surface conduction, limited work has been focused on tuning surface states and bulk carriers in Bi(2)Te(3) nanostructures by external field. Here we report gate-tunable surface conduction in Na-doped Bi(2)Te(3) topological insulator nanoplates. Significantly, by applying external gate voltages, such topological insulators can be tuned from p-type to n-type. Our results render a promise in finding novel topological insulators with enhanced surface states.


Nano Letters | 2012

Surface-Dominated Conduction in a 6 nm thick Bi2Se3 Thin Film

Liang He; Faxian Xiu; Marcus Teague; Wanjun Jiang; Yabin Fan; Xufeng Kou; Murong Lang; Yong Wang; Guan Huang; N.-C. Yeh; Kang L. Wang

We report a direct observation of surface dominated conduction in an intrinsic Bi(2)Se(3) thin film with a thickness of six quintuple layers grown on lattice-matched CdS (0001) substrates by molecular beam epitaxy. Shubnikov-de Haas oscillations from the topological surface states suggest that the Fermi level falls inside the bulk band gap and is 53 ± 5 meV above the Dirac point, which is in agreement with 70 ± 20 meV obtained from scanning tunneling spectroscopies. Our results demonstrate a great potential of producing genuine topological insulator devices using Dirac Fermions of the surface states, when the film thickness is pushed to nanometer range.


Nano Letters | 2014

Electrical Detection of Spin-Polarized Surface States Conduction in (Bi0.53Sb0.47)2Te3 Topological Insulator

Jianshi Tang; Li-Te Chang; Xufeng Kou; Koichi Murata; Eun Sang Choi; Murong Lang; Yabin Fan; Ying Jiang; Mohammad Montazeri; Wanjun Jiang; Yong Wang; Liang He; Kang L. Wang

Strong spin-orbit interaction and time-reversal symmetry in topological insulators enable the spin-momentum locking for the helical surface states. To date, however, there has been little report of direct electrical spin injection/detection in topological insulator. In this Letter, we report the electrical detection of spin-polarized surface states conduction using a Co/Al2O3 ferromagnetic tunneling contact in which the compound topological insulator (Bi0.53Sb0.47)2Te3 was used to achieve low bulk carrier density. Resistance (voltage) hysteresis with the amplitude up to about 10 Ω was observed when sweeping the magnetic field to change the relative orientation between the Co electrode magnetization and the spin polarization of surface states. The two resistance states were reversible by changing the electric current direction, affirming the spin-momentum locking in the topological surface states. Angle-dependent measurement was also performed to further confirm that the abrupt change in the voltage (resistance) was associated with the magnetization switching of the Co electrode. The spin voltage amplitude was quantitatively analyzed to yield an effective spin polarization of 1.02% for the surface states conduction in (Bi0.53Sb0.47)2Te3. Our results show a direct evidence of spin polarization in the topological surface states conduction. It might open up great opportunities to explore energy-efficient spintronic devices based on topological insulators.


Nano Letters | 2014

Proximity Induced High-Temperature Magnetic Order in Topological Insulator - Ferrimagnetic Insulator Heterostructure

Murong Lang; Mohammad Montazeri; Mehmet C. Onbasli; Xufeng Kou; Yabin Fan; Pramey Upadhyaya; Kaiyuan Yao; Frank Liu; Ying Jiang; Wanjun Jiang; Kin L. Wong; Guoqiang Yu; Jianshi Tang; Tianxiao Nie; Liang He; Robert N. Schwartz; Yong Wang; Caroline A. Ross; Kang L. Wang

Introducing magnetic order in a topological insulator (TI) breaks time-reversal symmetry of the surface states and can thus yield a variety of interesting physics and promises for novel spintronic devices. To date, however, magnetic effects in TIs have been demonstrated only at temperatures far below those needed for practical applications. In this work, we study the magnetic properties of Bi2Se3 surface states (SS) in the proximity of a high Tc ferrimagnetic insulator (FMI), yttrium iron garnet (YIG or Y3Fe5O12). Proximity-induced butterfly and square-shaped magnetoresistance loops are observed by magneto-transport measurements with out-of-plane and in-plane fields, respectively, and can be correlated with the magnetization of the YIG substrate. More importantly, a magnetic signal from the Bi2Se3 up to 130 K is clearly observed by magneto-optical Kerr effect measurements. Our results demonstrate the proximity-induced TI magnetism at higher temperatures, an important step toward room-temperature application of TI-based spintronic devices.


Nano Letters | 2013

Competing weak localization and weak antilocalization in ultrathin topological insulators.

Murong Lang; Liang He; Xufeng Kou; Pramey Upadhyaya; Yabin Fan; Hao Chu; Ying Jiang; Jens H. Bardarson; Wangjun Jiang; Eun Sang Choi; Yong Wang; N.-C. Yeh; Joel E. Moore; Kang L. Wang

We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.


Applied Physics Letters | 2011

Epitaxial growth of high mobility Bi2Se3 thin films on CdS

Xufeng Kou; Liang He; Faxian Xiu; Murong Lang; Zhi-Ming Liao; Yanjie Wang; A. V. Fedorov; Xinke Yu; Jianshi Tang; Guan Huang; X. W. Jiang; Jinfeng Zhu; Jin Zou; Kang L. Wang

We report the experiment of high quality epitaxial growth of Bi2Se3 thin films on hexagonal CdS (0001) substrates using a solid source molecular-beam epitaxy system. Layer-by-layer growth of single crystal Bi2Se3 has been observed from the first quintuple layer. The size of surface triangular terraces has exceeded 1 μm. Angle-resolved photoemission spectroscopy clearly reveals the presence of Dirac-cone-shape surface states. Magneto-transport measurements demonstrate a high Hall mobility of ∼6000 cm2/V s for the as-grown Bi2Se3 thin films at temperatures below 30 K. These characteristics of Bi2Se3 thin films promise a variety of potential applications in ultrafast, low-power dissipation devices.


Nature Nanotechnology | 2016

Electric-field control of spin–orbit torque in a magnetically doped topological insulator

Yabin Fan; Xufeng Kou; Pramey Upadhyaya; Qiming Shao; Lei Pan; Murong Lang; Xiaoyu Che; Jianshi Tang; Mohammad Montazeri; Koichi Murata; Li-Te Chang; Mustafa Akyol; Guoqiang Yu; Tianxiao Nie; Kin L. Wong; Jun Liu; Yong Wang; Yaroslav Tserkovnyak; Kang L. Wang

Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

Collaboration


Dive into the Murong Lang's collaboration.

Top Co-Authors

Avatar

Kang L. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xufeng Kou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yabin Fan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianshi Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianxiao Nie

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge