Murugesan Dinakaran
Birla Institute of Technology and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Murugesan Dinakaran.
European Journal of Medicinal Chemistry | 2009
Palaniappan Senthilkumar; Murugesan Dinakaran; Perumal Yogeeswari; Dharmarajan Sriram; Arnab China; Valakunja Nagaraja
Various 1-(substituted)-1,4-dihydro-6-nitro-4-oxo-7-(sub-secondary amino)-quinoline-3-carboxylic acids were synthesized from 2,4-dichlorobenzoic acid by six step synthesis. The compounds were evaluated for antimycobacterial in vitro and in vivo against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC(2)) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the 48 synthesized compounds, 7-(4-((benzo[d][1,3]dioxol-5-yl)methyl)piperazin-1-yl)-1-cyclopropyl-1,4-dihydro-6-nitro-4-oxoquinoline-3-carboxylic acid (8c) was found to be the most active compound in vitro with MIC of 0.08 and 0.16 microM against MTB and MDR-TB, respectively. In the in vivo animal model 8c decreased the bacterial load in lung and spleen tissues with 2.78 and 4.15-log10 protections, respectively, at the dose of 50 mg/kg body weight.
Bioorganic & Medicinal Chemistry | 2008
Murugesan Dinakaran; Palaniappan Senthilkumar; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja; Dharmarajan Sriram
Various 2-(sub)-3-fluoro/nitro-5,12-dihydro-5-oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid derivatives were synthesized from 2-aminothiophenol by a five-step reaction, evaluated for in-vitro and in-vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB), and Mycobacterium smegmatis (MC2), and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the thirty-four synthesized compounds, 2-(3-(diethylcarbamoyl)piperidin-1-yl)-)-3-fluoro-5,12-dihydro-5-oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid (7l) was found to be the most active compound in vitro with MIC of 0.18 and 0.08 microM against MTB and MTR-TB, respectively. Compound 7l was found to be 2 and 570 times more potent than isoniazid against MTB and MDR-TB, respectively. In the in-vivo animal model 7l decreased the bacterial load in lung and spleen tissues with 2.78 and 3.12-log10 protections, respectively, at the dose of 50 mg/kg body weight.
European Journal of Medicinal Chemistry | 2010
Dharmarajan Sriram; Perumal Yogeeswari; Murugesan Dinakaran; Debjani Banerjee; Pritesh Bhat; Sunil Gadhwal
Twenty two novel 2,10-dihydro-4aH-chromeno[3,2-c]pyridin-3-yl derivatives were synthesized by reacting 3-formyl chromone, (sub)-2-amino pyridines, N1-(prop-2-ynyl)arylamides in the presence of indium triflate. The compounds were evaluated their preliminary in-vitro and in-vivo activity against Mycobacterium tuberculosis H37Rv (MTB) and multi-drug resistant M. tuberculosis (MDR-TB). Among them N-[(4aS)-2-(3-methyl-2-pyridinyl)-10-oxo-2,10-dihydro-4aH-chromeno[3,2-c]pyridin-3-yl]methyl-4-ethylbenzenecarboxamide 4d was found to be the most active compound in-vitro with MICs of 0.22 and 0.07 microg/mL against MTB and MDR-TB respectively. In the in-vivo animal model 4d decreased the bacterial load in lung and spleen tissues with 1.11 and 2.94-log10 protections respectively at 25 mg/kg body weight dose.
Medicinal Chemistry | 2008
Murugesan Dinakaran; Palaniappan Senthilkumar; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja; Dharmarajan Sriram
Thirty four novel 7-fluoro/nitro-1,2-dihydro-5-oxo-8-(sub)-5H-thiazolo[3,2-a]quinoline-4-carboxylic acids were synthesized from 2,4-dichlorobenzoic acid and 2,4-dichloro-5-fluoroacetophenone by multi step reaction, evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC2) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesized compounds, 8-[6-[[(1,1-dimethylethoxy)carbonyl]amino]-3-azabicyclo[3.1.0]hex-3-yl]-1,2-dihydro-7-nitro-5-oxo-5H-thiazolo[3,2-a]quinoline-4-carboxylic acid (10q) was found to be the most active compound in vitro with MIC of 0.08 microM and <0.08 microM against MTB and MDR-TB respectively. Compound 10q was found to be 4.5 and >570 times more potent than isoniazid against MTB and MDR-TB respectively. In the in vivo animal model 10q decreased the bacterial load in lung and spleen tissues with 2.51 and 3.71-log10 protections respectively at the dose of 50 mg/kg body weight.
Archiv Der Pharmazie | 2009
Palaniappan Senthilkumar; Murugesan Dinakaran; Yogesh Chandraseakaran; Perumal Yogeeswari; Dharmarajan Sriram
Fifty one newer 1‐(cyclopropyl/2,4‐difluorophenyl/tert‐butyl)‐1,4‐dihydro‐8‐methyl‐6‐nitro‐4‐oxo‐7‐(substituted secondary amino)quinoline‐3‐carboxylic acids were synthesized from 1,3‐dichloro‐2‐methylbenzene and evaluated for in‐vitro antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi‐drug resistant Mycobacterium tuberculosis (MDR‐TB), and Mycobacterium smegmatis (MC2). Among the synthesized compounds, 1‐cyclopropyl‐1,4‐dihydro‐7‐(3,4‐dihydro‐6,7‐dimethoxyisoquinolin‐2(1H)‐yl)‐8‐methyl‐6‐nitro‐4‐oxoquinoline‐3‐carboxylic acid 9p was found to be the most active compound in vitro with a MIC value of 0.39 μM against MTB. Against MDR‐TB, compound 7‐(2‐carboxy‐5,6‐dihydroimidazo[1,2‐a]pyrazin‐7(8H)‐yl)‐1‐cyclopropyl‐1,4‐dihydro‐8‐methyl‐6‐nitro‐4‐oxoquinoline‐3‐carboxylic acid 9n was found to be the most active with a MIC value of 0.09 μM.
Bioorganic & Medicinal Chemistry Letters | 2008
Murugesan Dinakaran; Palaniappan Senthilkumar; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja; Dharmarajan Sriram
Journal of Antimicrobial Chemotherapy | 2007
Dharmarajan Sriram; Perumal Yogeeswari; Murugesan Dinakaran; Rathinasababathy Thirumurugan
Journal of Medicinal Chemistry | 2007
Dharmarajan Sriram; Palaniappan Senthilkumar; Murugesan Dinakaran; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja
Bioorganic & Medicinal Chemistry | 2008
Palaniappan Senthilkumar; Murugesan Dinakaran; Debjani Banerjee; Ruth Vandana Devakaram; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja; Dharmarajan Sriram
Biomedicine & Pharmacotherapy | 2009
Palaniappan Senthilkumar; Murugesan Dinakaran; Perumal Yogeeswari; Arnab China; Valakunja Nagaraja; Dharmarajan Sriram