Mustafa Misir
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mustafa Misir.
International Journal of Applied Metaheuristic Computing | 2010
Ender Özcan; Mustafa Misir; Gabriela Ochoa; Edmund K. Burke
Hyper-heuristics can be identified as methodologies that search the space generated by a finite set of low level heuristics for solving search problems. An iterative hyper-heuristic framework can be thought of as requiring a single candidate solution and multiple perturbation low level heuristics. An initially generated complete solution goes through two successive processes heuristic selection and move acceptance until a set of termination criteria is satisfied. A motivating goal of hyper-heuristic research is to create automated techniques that are applicable to a wide range of problems with different characteristics. Some previous studies show that different combinations of heuristic selection and move acceptance as hyper-heuristic components might yield different performances. This study investigates whether learning heuristic selection can improve the performance of a great deluge based hyper-heuristic using an examination timetabling problem as a case study.
Annals of Operations Research | 2012
Edmund K. Burke; Graham Kendall; Mustafa Misir; Ender Özcan
Automating the neighbourhood selection process in an iterative approach that uses multiple heuristics is not a trivial task. Hyper-heuristics are search methodologies that not only aim to provide a general framework for solving problem instances at different difficulty levels in a given domain, but a key goal is also to extend the level of generality so that different problems from different domains can also be solved. Indeed, a major challenge is to explore how the heuristic design process might be automated. Almost all existing iterative selection hyper-heuristics performing single point search contain two successive stages; heuristic selection and move acceptance. Different operators can be used in either of the stages. Recent studies explore ways of introducing learning mechanisms into the search process for improving the performance of hyper-heuristics. In this study, a broad empirical analysis is performed comparing Monte Carlo based hyper-heuristics for solving capacitated examination timetabling problems. One of these hyper-heuristics is an approach that overlaps two stages and presents them in a single algorithmic body. A learning heuristic selection method (L) operates in harmony with a simulated annealing move acceptance method using reheating (SA) based on some shared variables. Yet, the heuristic selection and move acceptance methods can be separated as the proposed approach respects the common selection hyper-heuristic framework. The experimental results show that simulated annealing with reheating as a hyper-heuristic move acceptance method has significant potential. On the other hand, the learning hyper-heuristic using simulated annealing with reheating move acceptance (L–SA) performs poorly due to certain weaknesses, such as the choice of rewarding mechanism and the evaluation of utility values for heuristic selection as compared to some other hyper-heuristics in examination timetabling. Trials with other heuristic selection methods confirm that the best alternative for the simulated annealing with reheating move acceptance for examination timetabling is a previously proposed strategy known as the choice function.
Journal of Heuristics | 2012
Burak Bilgin; Peter Demeester; Mustafa Misir; Wim Vancroonenburg; Greet Van den Berghe
We present one general high-level hyper-heuristic approach for addressing two timetabling problems in the health care domain: the patient admission scheduling problem and the nurse rostering problem. The complex combinatorial problem of patient admission scheduling has only recently been introduced to the research community. In addition to the instance that was introduced on this occasion, we present a new set of benchmark instances. Nurse rostering, on the other hand, is a well studied operations research problem in health care. Over the last years, a number of problem definitions and their corresponding benchmark instances have been introduced. Recently, a new nurse rostering problem description and datasets were introduced during the first Nurse Rostering Competition. In the present paper, we focus on this nurse rostering problem description.The main contribution of the paper constitutes the introduction of a general hyper-heuristic approach, which is suitable for addressing two rather different timetabling problems in health care. It is applicable without much effort, provided a set of low-level heuristics is available for each problem. We consider the instances of both health care problems for testing the general applicability of the hyper-heuristic approach. Also, improvements to the previous best results for the patient admission scheduling problem are presented. Solutions to the new nurse rostering instances are presented and compared with results obtained by an integer linear programming approach.
learning and intelligent optimization | 2012
Mustafa Misir; Katja Verbeeck; Patrick De Causmaecker; Greet Van den Berghe
The present study proposes a new selection hyper-heuristic providing several adaptive features to cope with the requirements of managing different heuristic sets. The approach suggested provides an intelligent way of selecting heuristics, determines effective heuristic pairs and adapts the parameters of certain heuristics online. In addition, an adaptive list-based threshold accepting mechanism has been developed. It enables deciding whether to accept or not the solutions generated by the selected heuristics. The resulting approach won the first Cross Domain Heuristic Search Challenge against 19 high-level algorithms.
Journal of Scheduling | 2013
Mustafa Misir; Katja Verbeeck; Patrick De Causmaecker; Greet Van den Berghe
This study provides a new hyper-heuristic design using a learning-based heuristic selection mechanism together with an adaptive move acceptance criterion. The selection process was supported by an online heuristic subset selection strategy. In addition, a pairwise heuristic hybridization method was designed. The motivation behind building an intelligent selection hyper-heuristic using these adaptive hyper-heuristic sub-mechanisms is to facilitate generality. Therefore, the designed hyper-heuristic was tested on a number of problem domains defined in a high-level framework, i.e., HyFlex. The framework provides a set of problems with a number of instances as well as a group of low-level heuristics. Thus, it can be considered a good environment to measure the generality level of selection hyper-heuristics. The computational results demonstrated the generic performance of the proposed strategy in comparison with other tested hyper-heuristics composed of the sub-mechanisms from the literature. Moreover, the performance and behavior analysis conducted for the hyper-heuristic clearly showed its adaptive characteristics under different search conditions. The principles comprising the here presented algorithm were at the heart of the algorithm that won the first international cross-domain heuristic search competition.
Applied Soft Computing | 2013
Mustafa Misir; Katja Verbeeck; P. De Causmaecker; G. Vanden Berghe
The present study concentrates on the generality of selection hyper-heuristics across various problem domains with a focus on different heuristic sets in addition to distinct experimental limits. While most hyper-heuristic research employs the term generality in describing the potential for solving various problems, the performance changes across different domains are rarely reported. Furthermore, a hyper-heuristics performance study purely on the topic of heuristic sets is uncommon. Similarly, experimental limits are generally ignored when comparing hyper-heuristics. In order to demonstrate the effect of these generality related elements, nine heuristic sets with different improvement capabilities and sizes were generated for each of three target problem domains. These three problem domains are home care scheduling, nurse rostering and patient admission scheduling. Fourteen hyper-heuristics with varying intensification/diversification characteristics were analysed under various settings. Empirical results indicate that the performance of selection hyper-heuristics changes significantly under different experimental conditions.
Journal of the Operational Research Society | 2015
Mustafa Misir; Pieter Smet; Greet Van den Berghe
The present study investigates the performance of heuristics while solving problems with routing and rostering characteristics. The target problems include scheduling and routing home care, security and maintenance personnel. In analysing the behaviour of the heuristics and determining the requirements for solving the aforementioned problems, the winning hyper-heuristic from the first International Cross-domain Heuristic Search Challenge (CHeSC 2011) is employed. The completely new application of a hyper-heuristic as an analysis tool offers promising perspectives for supporting dedicated heuristic development. The experimental results reveal that different low-level heuristics perform better on different problems and that their performance varies during a search process. The following characteristics affect the performance of the heuristics: the planning horizon, the number of activities and lastly the number of resources. The body of this paper details both these characteristics and also discusses the required features for embedding in an algorithm to solve problems particularly with a vehicle routing component.
uk workshop on computational intelligence | 2013
Ender Özcan; Mustafa Misir; Ahmed Kheiri
A hyper-heuristic is a high level methodology which performs search over the space of heuristics each operating on the space of solutions to solve hard computational problems. This search process is based on either generation or selection of low level heuristics. The latter approach is used in selection hyper-heuristics. A generic selection hyper-heuristic has two main components which operate successively: heuristic selection and move acceptance methods. An initially generated solution is improved iteratively using these methods. At a given step, the most appropriate heuristic is selected from a fixed set of low level heuristics and applied to a candidate solution producing a new one. Then, a decision is made whether to accept or reject the new solution. This process is repeated until the termination criterion is satisfied. There is strong empirical evidence that the choice of selection hyper-heuristic influences its overall performance. This is one of the first studies to the best of our knowledge that suggests and explores the use of group decision making methods for move acceptance in selection hyper-heuristics. The acceptance decision for a move is performed by multiple methods instead of a single one. The performance of four such group decision making move acceptance methods are analysed within different hyper-heuristics over a set of benchmark functions. The experimental results show that the group decision making strategies have potential to improve the overall performance of selection hyper-heuristics.
parallel problem solving from nature | 2012
Mustafa Misir; Katja Verbeeck; P. De Causmaecker; G. Vanden Berghe
The present study investigates the effect of heuristic sets on the performance of several selection hyper-heuristics. The performance of selection hyper-heuristics is strongly dependant on low-level heuristic sets employed for solving target problems. Therefore, the generality of hyper-heuristics should be examined across various heuristic sets. Unlike the majority of hyper-heuristics research, where the low-level heuristic set is considered given, the present study investigates the influence of the low-level heuristics on the hyper-heuristics performance. To achieve this, a number of heuristic sets was generated for the patient admission scheduling problem by setting the parameters of a set of parametric heuristics with specific values. These values were set such that nine heuristic sets with different improvement capabilities, speed characteristics and size were generated. A group of hyper-heuristics with certain selection mechanisms and acceptance criteria having dissimilar intensification/diversification abilities were taken from the literature enabling a comprehensive analysis. The experimental results indicated that different hyper-heuristics perform superiorly on distinct heuristic sets. The results can be explained and hence result in hyper-heuristic design recommendations.
international symposium on computer and information sciences | 2016
Ahmed Kheiri; Mustafa Misir; Ender Özcan
Selection hyper-heuristics are high level search methodologies which control a set of low level heuristics while solving a given problem. Move acceptance is a crucial component of selection hyper-heuristics, deciding whether to accept or reject a new solution at each step during the search process. This study investigates group decision making strategies as ensemble methods exploiting the strengths of multiple move acceptance methods for improved performance. The empirical results indicate the success of the proposed methods across six combinatorial optimisation problems from a benchmark as well as an examination timetabling problem.