Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mustafa S. Nasser is active.

Publication


Featured researches published by Mustafa S. Nasser.


Journal of Environmental Management | 2017

A comprehensive review of electrocoagulation for water treatment: Potentials and challenges

Dina T. Moussa; Muftah H. El-Naas; Mustafa S. Nasser; Mohammed J. Al-Marri

Electrocoagulation is an effective electrochemical approach for the treatment of different types of contaminated water and has received considerable attention in recent years due its high efficiency in dealing with numerous stubborn pollutants. It has been successful in dealing with organic and inorganic contaminants with negligible or almost no generation of by-product wastes. During the past decade, vast amount of research has been devoted to utilizing electrocoagulation for the treatment of several types of wastewater, ranging from polluted groundwater to highly contaminated refinery wastewater. This paper offers a comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for water treatment, focusing on current successes on specific applications in water and wastewater treatment, as well as potentials for future applications. The paper examines such aspects as theory, potential applications, current challenges, recent developments as well as economical concerns associated with the technology. Most of the recent EC research has been focusing on pollutant-specific evaluation without paying attention to cell design, process modeling or industrial applications. This review attempts to highlight the main achievements in the area and outlines the major shortcomings with recommendations for promising research options that can enhance the technology and broaden its range of applications.


Korean Journal of Chemical Engineering | 2016

Flocculation and viscoelastic behavior of industrial papermaking suspensions

Mustafa S. Nasser; Mohammed J. Al-Marri; Abdelbaki Benamor; Sagheer A. Onaizi; Majeda Khraisheh; Mohammed A. Saad

The effects of the surface charge type and density C496, C492 and A130LMW polyacrylamides (PAMs) on the rheological behavior of real industrial papermaking suspensions were quantitatively related to the degree of flocculation for the same industrial papermaking suspensions. The floc sizes were larger but less dense when anionic PAM was used, and this due to the repulsive forces between the anionic PAM and colloidal particles, leading to the development of open structure flocs of less density. On the other hand, rheological measurements showed that the papermaking suspension is thixotropic with a measurable yield stress. The results showed that the magnitude of the critical stress, τc, complex viscosity, η*, elastic modulus, G′, and viscous modulus, G″, depend on the number of interactions between the PAM chains and particle surface and the strength of those interactions. Cationic PAM showed higher values of η*, G′, G″ and τc compared to anionic PAM. This behavior is in good agreement with Bingham yield stress, τB, adsorption and effective floc density results. Similar to oscillatory measurements, creep measurements also showed that the deformation was much lower for the cationic PAM based suspensions than for the anionic PAM based suspensions. Furthermore, the results revealed that increasing the cationic PAM surface charge decreases the floc size but increases the adsorption rate, elasticity and effective floc density proposing differences in the floc structures, which are not revealed clearly in the Bingham yield stress measurements.


Polymer Reviews | 2018

Polymeric Surfactants and Emerging Alternatives used in the Demulsification of Produced Water: A Review

Farrukh Shehzad; Ibnelwaleed A. Hussein; Muhammad Shahzad Kamal; Waqar Ahmad; Abdullah S. Sultan; Mustafa S. Nasser

ABSTRACT Stable emulsions are frequently encountered in oil production and cause a series of environmental and operational issues. Chemical demulsification is widely used for the separation of oil from water or removal of water from oil. The chemicals used in the demulsification process have a strong affinity to the oil-water interface. This review presents the various types of chemical demulsifiers used for the demulsification of water-in-oil and oil-in-water emulsions. The review covers the relevant properties of polymeric surfactants such as polyether, dendrimers, and natural biodegradable polymeric surfactants. In addition, emerging alternatives like nanoparticles-based demulsifiers and ionic liquids are also reviewed. The factors affecting the demulsification efficiency of these demulsifiers and structure-property relationships are discussed. Copolymers with high hydrophilic content and molecular weight are more efficient demulsifiers. Similarly, the position isomerism (same carbon skeleton and functional groups but a different location of functional groups) strongly affects the HLB and demulsification performance. Generally, dendrimers show better performance compared to linear polymeric surfactants due to their relatively higher interfacial activity, better penetrability, and a larger number of reactive terminal groups. Techniques used to evaluate the performance of demulsifiers are also covered. The review also highlights the current developments and future prospects of chemical demulsifiers.


Frontiers of Chemical Engineering in China | 2014

Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution

Farouq Twaiq; Mustafa S. Nasser; Sagheer A. Onaizi

The key aim of this study is to evaluate the adsorption of heavy oil from aqueous solutions with different oil contents over mesoporous silicate materials having different surfactant template contents. The mesoporous silicate materials have been synthesized from tetraethylorthosilicate as a silica precursor and cetyltrimethylammonium bromide as a template using the sol-gel technique. Four samples were prepared by (1) totally removing the template using the calcination process, (2) partially removing the template via ethanol extraction, (3) partially removing the template via water extraction, and (4) keeping the template as synthesized, respectively. These four samples have been characterized using X-ray diffraction, nitrogen adsorption, thermal gravimetric analysis and Fourier transformed infrared. The effect of the degree of template removal of these mesoporous materials for the oil removal has been investigated. The oil removal is inversely proportional to the surfactant content in the mesoporous material, being highest for the calcined sample but lowest for the as-synthesized sample. The kinetic of oil adsorption over the calcined material has been also studied and the data obtained fit well a second-order model.


Bioinorganic Chemistry and Applications | 2017

Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

Omer Yahya Bakather; Ahmad Kayvani Fard; Ihsanullah; Majeda Khraisheh; Mustafa S. Nasser; Muataz Ali Atieh

The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions.


RSC Advances | 2018

Aqueous dispersions of carbon black and its hybrid with carbon nanofibers

Mohamed Youssry; Fadi Z. Kamand; Musaab Magzoub; Mustafa S. Nasser

The aqueous dispersions of a special type of carbon black (CB) in 1 M lithium bis(trifluoromethanesulfonimide) electrolyte is mainly controlled by the affinity of the aqueous electrolyte towards the CB particles rather than the particle size. In spite of its small particle size (30 nm), this type of CB forms a three-dimensional open network which is rheologically and electrically percolated at a relatively high threshold (2.0 wt%) with enhanced rheological and electrical properties. At this percolating threshold, replacing a trace amount of CB with equivalent carbon nanofibers (CNFs) produces hybrid dispersions with higher electrical conductivity and comparable rheological behavior to pure CB dispersions. This hybrid dispersion is dominated by a cooperatively supporting network, which is wired by the flexible filamentous nanofibers so that it is able to recover the conductivity loss under flow conditions due to flow-induced breaking up of the conductive pathways of CB and presumably sustain a higher load of active materials. This finding suggests hybrid dispersions as a promising precursor in the formulation of electrode suspensions for aqueous semi-solid redox flow cells.


Journal of Sol-Gel Science and Technology | 2018

Synthesis and characterization of Sm3+-doped ZnO nanoparticles via a sol–gel method and their photocatalytic application

Muneer M. Ba-Abbad; Mohd Sobri Takriff; Abdelbaki Benamor; Mustafa S. Nasser; Ebrahim Mahmoudi; Abdul Wahab Mohammad

Spherical ZnO nanoparticles doped by samarium ions were successfully synthesized via a simple sol–gel method. The structures, morphologies, optical properties and surface areas were investigated for all samples using specific characterization methods. The hexagonal wurtzite structure of ZnO and samarium-doped ZnO nanoparticles were determined. The results obtained showed that the sizes of samarium-doped ZnO nanoparticles decreased with increasing samarium ion concentration. It was noticed that in the presence of samarium ions, the band gap slightly changed from the 3.198 eV of ZnO to 3.288 eV for samarium-doped ZnO with enhanced absorption in the UV region. This can be attributed to the transition of electrons from the conduction band to the acceptor energy level of samarium. The XPS results of samarium-doped ZnO, showed that only one oxidation state of samarium, with good incorporation into the ZnO matrix, was presented, with no peak of samarium oxide. The surface areas analyses showed that higher surface areas were obtained for samarium-doped ZnO, which is attributed to the smaller size of the particles. The photocatalytic degradation of 2-chlorophenol was investigated under sunlight in presence of ZnO and samarium-doped ZnO nanoparticles. A higher performance of samarium-doped ZnO for photocatalytic degradation of 2-chlorophenol at 0.50 wt.% was observed, compared to pure ZnO nanoparticles under the same experimental conditions.Graphical abstract


Separation and Purification Technology | 2016

Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications

Ihsanullah; Aamir Abbas; Adnan M. Al-Amer; Tahar Laoui; Mohammed J. Al-Marri; Mustafa S. Nasser; Majeda Khraisheh; Muataz Ali Atieh


Separation and Purification Technology | 2017

Influence of Polyelectrolytes and Other Polymer Complexes on the Flocculation and Rheological Behaviors of Clay Minerals: A Comprehensive Review

Shifa M.R. Shaikh; Mustafa S. Nasser; Ibnelwaleed A. Hussein; Abdelbaki Benamor; Sagheer A. Onaizi; Hazim Qiblawey


Chemical Engineering Journal | 2017

Investigation of the effect of polyelectrolyte structure and type on the electrokinetics and flocculation behavior of bentonite dispersions

Shifa M.R. Shaikh; Mustafa S. Nasser; Ibnelwaleed A. Hussein; Abdelbaki Benamor

Collaboration


Dive into the Mustafa S. Nasser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul Wahab Mohammad

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Muneer M. Ba-Abbad

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge