Mustafa Vali
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mustafa Vali.
Clinical Cancer Research | 2004
Jyoti Mehrotra; Mustafa Vali; Megan McVeigh; Scott L. Kominsky; Mary Jo Fackler; Jaana Lahti-Domenici; Kornelia Polyak; Nicoletta Sacchi; Elizabeth Garrett-Mayer; Pedram Argani; Saraswati Sukumar
Purpose: Most often it is not the primary tumor, but metastasis to distant organs that results in the death of breast cancer patients. To characterize molecular alterations in breast cancer metastasis, we investigated the frequency of hypermethylation of five genes (Cyclin D2, RAR-β, Twist, RASSF1A, and HIN-1) in metastasis to four common sites: lymph node, bone, brain, and lung. Experimental Design: Methylation-specific PCR for the five genes was performed on DNA extracted from archival paraffin-embedded specimens of paired primary breast cancer and its lymph nodes (LN) metastasis (n = 25 each); in independent samples of metastasis to the bone (n = 12), brain (n = 8), and lung (n = 10); and in normal bone, brain, and lung (n = 22). Results: No hypermethylation was detected in the five genes in the normal host tissues. In paired samples, LN metastasis had a trend of higher prevalence of methylation compared with the primary breast carcinoma for all five genes with significance for HIN-1 (P = 0.04). Compared with the primary breast carcinomas, all five genes had higher methylation frequencies in the bone, brain, and lung metastasis, with HIN-1 and RAR-β methylation being significantly higher (P < 0.01) in each group. Loss of expression of all five genes correlated, with a few exceptions, to hypermethylation of their promoter sequences in metastatic carcinoma cells microdissected from LNs. Conclusion: The frequent presence of hypermethylated genes in locoregional and distant metastasis could render them particularly susceptible to therapy targeted toward gene reactivation combining demethylating agents, histone deacetylase inhibitors, and/or differentiating agents.
Current Pharmaceutical Biotechnology | 2010
Shanmugasundaram Ganapathy-Kanniappan; Mustafa Vali; Rani Kunjithapatham; Manon Buijs; Labiq H. Syed; Pramod Rao; Shinichi Ota; Byung Kook Kwak; Romaric Loffroy; J.F. Geschwind
The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.
Journal of Pharmacology and Experimental Therapeutics | 2008
Mustafa Vali; Josephina A. Vossen; Manon Buijs; James Engles; Eleni Liapi; Veronica Prieto Ventura; Afsheen Khwaja; Obele Acha-Ngwodo; Ganapathy Shanmugasundaram; Labiq H. Syed; Richard L. Wahl; Jean Francois H Geschwind
The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14C]3-BrPA i.v., 20 mM [14C]3-BrPA i.v., or 25 ml of phosphate-buffered saline (PBS). All rabbits (with the exception of the 20 mM i.v. group) received FDG 1 h before sacrifice. Next, we compared survival of animals treated with i.a. administered 1.75 mM [14C]3-BrPA in 25 ml of PBS (n = 22) with controls (n = 10). After i.a. infusion, tumor uptake of [14C]3-BrPA was 1.8 ± 0.2% percentage of injected dose per gram of tissue (%ID/g), whereas other tissues showed minimal uptake. After i.v. infusion (1.75 mM), tumor uptake of [14C]3-BrPA was 0.03 ± 0.01% ID/g. After i.a. administration of [14C]3-BrPA, tumor uptake of FDG was 26 times lower than in controls. After i.v. administration of [14C]3-BrPA, there was no significant difference in tumor FDG uptake. Survival analysis showed that rabbits treated with 1.75 mM 3-BrPA survived longer (55 days) than controls (18.6 days). Intra-arterially delivered 3-BrPA has a favorable biodistribution profile, combining a high tumor uptake resulting in blockage of FDG uptake with no effects on healthy tissue. The local control of the liver tumor by 3-BrPA resulted in a significant survival benefit.
Radiology | 2012
Shanmugasundaram Ganapathy-Kanniappan; Rani Kunjithapatham; Michael Torbenson; Pramod Rao; Kathryn A. Carson; Manon Buijs; Mustafa Vali; Jean Francois H Geschwind
PURPOSE To characterize tumor response to percutaneous injection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antagonists in a mouse model of human hepatocellular carcinoma (HCC). MATERIALS AND METHODS Animal experiments were approved by the Johns Hopkins University Animal Care and Use Committee. Luciferase (luc) gene-expressing Hep3B tumor-bearing athymic nude mice were randomly divided into four groups of six mice each. Tumor-specific GAPDH inhibition was achieved by using percutaneous injection of GAPDH antagonists-3-bromopyruvate (3-BrPA) or GAPDH-specific short hairpin RNA (shRNA). Tumor response to treatment was assessed by using bioluminescence imaging and analysis of GAPDH function and apoptotic markers (caspase-3, caspase-9, and positive staining for terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling). HCC samples from 34 patients were obtained from the Johns Hopkins tumor bank, as approved by the Institutional Review Board, for GAPDH expression analysis. Statistical analysis was performed by using a two-sample t test or Spearman rank correlation coefficient. RESULTS In vitro, 3-BrPA affected Hep3B cell viability (half maximal inhibitory concentration = 0.15 mmol/L), and GAPDH shRNA suppressed (45.5%) colony formation. In vivo, percutaneous injection of GAPDH antagonists into luc-Hep3B tumors decreased bioluminescence imaging signal and viability (3-BrPA, P < .0001; GAPDH shRNA, P = .03). The 3-BrPA treatment primarily inhibited GAPDH activity (74.5%) compared with its expression (34.3%), whereas GAPDH shRNA inhibited both activity (60.6%) and expression (44.4%). Targeted inhibition of GAPDH by using 3-BrPA or shRNA induced apoptosis. HCC samples from patients demonstrated a strong correlation between GAPDH upregulation and the proto-oncogene c-jun expression (r = 0.543, P = .003). CONCLUSION Percutaneous injection of GAPDH antagonists induces apoptosis and blocks Hep3B tumor progression, which demonstrates the therapeutic potential of targeting GAPDH in human HCC.
Assay and Drug Development Technologies | 2010
Shanmugasundaram Ganapathy-Kanniappan; Jean Francois H Geschwind; Rani Kunjithapatham; Manon Buijs; Labiq H. Syed; Pramod Rao; Shinichi Ota; Mustafa Vali
3-Bromopyruvate (3BrPA) is a pyruvate analog known for its alkylating property. Recently, several reports have documented the antiglycolytic and anticancer effects of 3BrPA and its potential for therapeutic applications. 3BrPA-mediated cytotoxicity has been evaluated in vitro by various methods including tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)-based assays such as MTT, MTS, and so on. However, growing body of evidences has shown that tetrazolium reagent may interfere with the test compounds. In this study, we investigated whether the tetrazolium reagent interferes with the assessment of 3BrPA cytotoxicity. The results of the tetrazolium-based MTS assay were compared with 3 distinct cell viability detection methods, that is, Trypan Blue staining, ATP depletion, and Annexin V staining in 2 different cell lines, Vx-2 and HepG2. The MTS assay data showed false positive results by indicating increased cell viability at 1 mM and 2 mM 3BrPA whereas the other cell viability assays demonstrated that both Vx-2 and HepG2 cells are not viable at the same treatment conditions. In order to validate the direct interaction of 3BrPA with MTS reagent, we tested cell-free media incubated with different concentrations of 3BrPA. The results of cell-free media showed an increase in absorbance in a dose-dependent manner confirming the interaction of MTS with 3BrPA. Thus, our data clearly demonstrate that 3BrPA interferes with the accuracy of MTS-based cytotoxicity evaluation. Hence, we suggest that employing multiple methods of biochemical as well as morphological cytotoxicity assays is critical to evaluate 3BrPA-mediated cell death.
The Journal of Nuclear Medicine | 2011
Eleni Liapi; Jean Francois H Geschwind; Mustafa Vali; Afsheen Khwaja; Veronica Prieto-Ventura; Manon Buijs; Josephina A. Vossen; Shanmugasudaram Ganapathy; Richard L. Wahl
The purpose of this study was to determine the effects of 3-bromopyruvate (3-BrPA) on tumor glucose metabolism as imaged with 18F-FDG PET/CT at multiple time points after treatment and compare them with those after intraarterial control injections of saline. Methods: Twenty-three New Zealand White rabbits implanted intrahepatically with VX2 tumors were assigned to 1 of 2 groups: 14 rabbits were assigned to the treatment group (TG) and 9 to the saline control group (SG). All animals were infused with 25 mL of either 1.75 mM 3-BrPA or saline over 1 h via a 2-French catheter, which was secured in the hepatic artery. For PET/CT, the animals were injected with 37 MBq of 18F-FDG at 1 d before treatment and 2 h, 24 h, and 1 wk after treatment. Tumor size, tumor and liver maximal standardized uptake value (SUVmax), and tumor-to-background ratios were calculated for all studies. Seven TG and 5 SG animals were sacrificed at 1 wk after treatment for histopathologic analysis. Results: Intense 18F-FDG uptake was seen in untreated tumors. A significant reduction in tumor SUVmax was noted in TG animals, when compared with SG animals, at 1 wk after treatment (P = 0.006). The tumor–to–liver background ratio in the TG animals, compared with the SG animals, was significantly reduced as early as 24 h after treatment (P = 0.01) and remained reduced at 1 wk (P = 0.003). Tumor SUVmax increased from the baseline levels at 7 d in controls (P = 0.05). The histopathologic analysis of explanted livers revealed increased tumor necrosis in all TG samples. There was a significant inverse correlation (r2 = 0.538, P = 0.005) between the percentage of tumor necrosis on histopathology and tumor SUVmax on 18F-FDG PET at 7 d after treatment with 3-BrPA. Conclusion: Intraarterial injection of 3-BrPA resulted in markedly decreased 18F-FDG uptake as imaged by PET/CT and increased tumor necrosis on histopathology at 1 wk after treatment in the VX2 rabbit liver tumor. PET/CT appears to be a useful means to follow antiglycolytic therapy with 3-BrPA.
Anticancer Research | 2009
Shanmugasundaram Ganapathy-Kanniappan; Jean Francois H Geschwind; Rani Kunjithapatham; Manon Buijs; Josephina A. Vossen; Irina Tchernyshyov; Robert N. Cole; Labiq H. Syed; Pramod Rao; Shinichi Ota; Mustafa Vali
Journal of Biological Chemistry | 2000
Venu Raman; Akihiro Tamori; Mustafa Vali; Karen I. Zeller; Dorian Korz; Saraswati Sukumar
Cancer Research | 2006
Satoshi Murata; Scott L. Kominsky; Mustafa Vali; Zhe Zhang; Elizabeth Garrett-Mayer; Dorian Korz; David L. Huso; Sharyn D. Baker; James P. Barber; Elizabeth M. Jaffee; R. Todd Reilly; Saraswati Sukumar
Journal of Vascular and Interventional Radiology | 2007
Mustafa Vali; Eleni Liapi; Jeanne Kowalski; Kelvin Hong; Afsheen Khwaja; Michael Torbenson; Christos S. Georgiades; Jean Francois H Geschwind
Collaboration
Dive into the Mustafa Vali's collaboration.
Shanmugasundaram Ganapathy-Kanniappan
Johns Hopkins University School of Medicine
View shared research outputs