Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mustafa Yorulmaz is active.

Publication


Featured researches published by Mustafa Yorulmaz.


Science | 2010

Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast

Alexander Gaiduk; Mustafa Yorulmaz; Paul V. Ruijgrok; Michel Orrit

Hot Enough to See Over the last decade, detection of fluorescence from individual molecules has allowed for increasingly detailed probing of biochemical reaction mechanisms. The key advantage of fluorescence detection is the absence of background; the signal appears as a glowing point in a void. However, not all molecules fluoresce, and so alternative detection methods are needed. Gaiduk et al. (p. 353) now show that a photothermal detection scheme can resolve absorption events by individual molecular dyes that exhibit poor fluorescence efficiency. The technique relies on each molecules release of heat to the surrounding solvent after light absorption, an energy dissipation mechanism that is enhanced as fluorescence efficiency declines. The solvent heating alters the local refractive index just enough to scatter a portion of a probe beam backwards, revealing the absorption. Single molecules have been detected through the heat they release after absorbing light. So far, single-molecule imaging has predominantly relied on fluorescence detection. We imaged single nonfluorescent azo dye molecules in room-temperature glycerol by the refractive effect of the heat that they release in their environment upon intense illumination. This photothermal technique provides contrast for the absorbing objects only, irrespective of scattering by defects or roughness, with a signal-to-noise ratio of ~10 for a single molecule in an integration time of 300 milliseconds. In the absence of oxygen, virtually no bleaching event was observed, even after more than 10 minutes of illumination. In a solution saturated with oxygen, the average bleaching time was of the order of 1 minute. No blinking was observed in the absorption signal. On the basis of bleaching steps, we obtained an average absorption cross section of 4 angstroms2 for a single chromophore.


Nano Letters | 2012

Luminescence Quantum Yield of Single Gold Nanorods

Mustafa Yorulmaz; Saumyakanti Khatua; Peter Zijlstra; Alexander Gaiduk; Michel Orrit

We study the luminescence quantum yield (QY) of single gold nanorods with different aspect ratios and volumes. Compared to gold nanospheres, we observe an increase of QY by about an order of magnitude for particles with a plasmon resonance >650 nm. The observed trend in QY is further confirmed by controlled reshaping of a single gold nanorod to a spherelike shape. Moreover, we identify two spectral components, one around 500 nm originating from a combination of interband transitions and the transverse plasmon and one coinciding with the longitudinal plasmon band. These components are analyzed by correlating scattering and luminescence spectra of single nanorods and performing polarization sensitive measurements. Our study contributes to the understanding of luminescence from gold nanorods. The enhanced QY we report can benefit applications in biological and soft matter studies.


Angewandte Chemie | 2013

Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod

Haifeng Yuan; Saumyakanti Khatua; Peter Zijlstra; Mustafa Yorulmaz; Michel Orrit

Single molecules: Large enhancements of single-molecule fluorescence up to 1100 times by using synthesized gold nanorods are reported (see picture). This high enhancement is achieved by selecting a dye with its adsorption and emission close to the surface plasmon resonance of the gold nanorods


Chemical Science | 2010

Detection limits in photothermal microscopy

Alexander Gaiduk; Paul V. Ruijgrok; Mustafa Yorulmaz; Michel Orrit

We show how to push the detection limits in photothermal microscopy towards weaker single absorbers, by a systematic optimization of signal and noise sources. In particular, we (i) maximize the power of the probe laser beam, (ii) select optimal optical and thermal properties for the medium embedding the absorber, and (iii) thermally isolate the absorber from the glass substrate. These different experimental conditions are optimized in turn with single immobilized gold nanoparticles. We demonstrate the detection of a dissipated power of 3 nW with a signal-to-noise ratio of 8, and an integration time of 10 ms. This corresponds to a less than 0.1 K surface temperature rise for a 20 nm-diameter gold nanosphere (0.4 K for 5 nm). As an example of the achieved detection sensitivity, we show simultaneous photothermal and fluorescence detection of individual 20 nm fluorescent beads, each containing about 20 Nile red dye molecules.


Journal of Physical Chemistry B | 2014

Single-Particle Spectroscopy Reveals Heterogeneity in Electrochemical Tuning of the Localized Surface Plasmon

Chad P. Byers; Benjamin S. Hoener; Wei-Shun Chang; Mustafa Yorulmaz; Stephan Link; Christy F. Landes

A hyperspectral imaging method was developed that allowed the identification of heterogeneous plasmon response from 50 nm diameter gold colloidal particles on a conducting substrate in a transparent three-electrode spectroelectrochemical cell under non-Faradaic conditions. At cathodic potentials, we identified three distinct behaviors from different nanoparticles within the same sample: irreversible chemical reactions, reversible chemical reactions, and reversible charge density tuning. The irreversible reactions in particular would be difficult to discern in alternate methodologies. Additional heterogeneity was observed when single nanoparticles demonstrating reversible charge density tuning in the cathodic regime were measured dynamically in anodic potential ranges. Some nanoparticles that showed charge density tuning in the cathodic range also showed signs of an additional chemical tuning mechanism in the anodic range. The expected changes in nanoparticle free-electron density were modeled using a charge density-modified Drude dielectric function and Mie theory, a commonly used model in colloidal spectroelectrochemistry. Inconsistencies between experimental results and predictions of this common physical model were identified and highlighted. The broad range of responses on even a simple sample highlights the rich experimental and theoretical playgrounds that hyperspectral single-particle electrochemistry opens.


Science Advances | 2015

From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

Chad P. Byers; Hui Zhang; Dayne F. Swearer; Mustafa Yorulmaz; Benjamin S. Hoener; Da Huang; Anneli Hoggard; Wei-Shun Chang; Paul Mulvaney; Emilie Ringe; Naomi J. Halas; Peter Nordlander; Stephan Link; Christy F. Landes

Redox electrochemistry was used to reversibly tune the optical properties of plasmonic core-shell nanoparticles and dimers. The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.


ChemPhysChem | 2011

Correlated absorption and photoluminescence of single gold nanoparticles.

Alexander Gaiduk; Mustafa Yorulmaz; Michel Orrit

We perform simultaneous absorption (photothermal) and fluorescence detection of gold nanospheres with diameters of 80, 60, 40, 20, 10, and 5 nm. We unambiguously identify the same individual nanoparticles (NPs) over large areas (>400 μm(2)) by means of atomic force microscopy (AFM) and optical absorption (photothermal) microscopy. We correlate the height of NPs measured with AFM with absorption and fluorescence signals from the same individual NPs. That allows us to compare their brightness and estimate their fluorescence quantum yield at the single NP level.


Nano Letters | 2015

Single-particle absorption spectroscopy by photothermal contrast.

Mustafa Yorulmaz; Sara Nizzero; Anneli Hoggard; Lin-Yung Wang; Yi-Yu Cai; Man-Nung Su; Wei-Shun Chang; Stephan Link

Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.


New Journal of Physics | 2015

Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere

Lei Hou; Mustafa Yorulmaz; Nico R. Verhart; Michel Orrit

We form sub-micrometer-sized vapor bubbles around a single laser-heated gold nanoparticle in a liquid and monitor them through optical scattering of a probe laser. Bubble formation is explosive even under continuous-wave heating. The fast, inertia-governed expansion is followed by a slower contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination powers, bubble time traces show a clear echo signature. We attribute it to sound waves released upon the initial explosion and reflected by flat interfaces, hundreds of microns away from the particle. Echoes can trigger new explosions. A nanobubble’s steady state (with a vapor shell surrounding the heated nanoparticle) can be reached by a proper time profile of the heating intensity. Stable nanobubbles could have original applications for light modulation and for enhanced optical–acoustic coupling in photoacoustic microscopy.


ChemPhysChem | 2012

Absorption, Luminescence, and Sizing of Organic Dye Nanoparticles and of Patterns Formed Upon Dewetting

Alexander Gaiduk; Mustafa Yorulmaz; Eléna Ishow; Michel Orrit

Organic nanoparticles made of a push-pull triarylamine dye with an average diameter of 60 nm, were prepared by reprecipitation. We study their photophysical properties by a combination of photothermal and fluorescence microscopy. Photothermal contrast provides a quantitative measure of the number of absorbers. The size of nanoparticles estimated from the absorption measurements was compared with sizes measured by AFM. Fluorescence and absorption microscopy provide quantum yield on the single-particle level as a function of excitation intensity. The quantum yield strongly decreases at high intensities because of singlet-singlet or singlet-triplet annihilation. We also report the formation of molecular thin layers and of labyrinth-shaped structures on glass substrates, presumably induced by dewetting.

Collaboration


Dive into the Mustafa Yorulmaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Zijlstra

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge