Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Musthafa Mohamed Essa is active.

Publication


Featured researches published by Musthafa Mohamed Essa.


Journal of Neurochemistry | 2011

Brain region‐specific deficit in mitochondrial electron transport chain complexes in children with autism

Abha Chauhan; Feng Gu; Musthafa Mohamed Essa; Jerzy Wegiel; Kulbir Kaur; William Ted Brown; Ved Chauhan

J. Neurochem. (2011) 117, 209–220.


Neurochemical Research | 2012

Neuroprotective Effect of Natural Products Against Alzheimer's Disease

Musthafa Mohamed Essa; Reshmi K. Vijayan; M. A. Memon; Nady Braidy; Gilles J. Guillemin

Nature has gifted mankind with a plethora of flora-bearing fruits, vegetables and nuts. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease and other neuronal dysfunctions. Accumulated evidence suggests that naturally occurring phyto-compounds, such as polyphenolic antioxidants found in fruits, vegetables, herbs and nuts, may potentially hinder neurodegeneration, and improve memory and cognitive function. Nuts such as walnut have also demonstrated neuroprotective effect against AD. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signalling pathways associated with protein folding and neuroinflammation. The neuroprotective effects of various naturally occurring compounds in AD is evaluating in this review.


Neurochemical Research | 2011

Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells.

Balu Muthaiyah; Musthafa Mohamed Essa; Ved Chauhan; Abha Chauhan

Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death.


Oxidative Medicine and Cellular Longevity | 2013

Neuroprotective Effects of Hesperidin, a Plant Flavanone, on Rotenone-Induced Oxidative Stress and Apoptosis in a Cellular Model for Parkinson’s Disease

Kuppusamy Tamilselvam; Nady Braidy; Thamilarasan Manivasagam; Musthafa Mohamed Essa; Nagarajan Rajendra Prasad; Subburayan Karthikeyan; Arokyasamy Justin Thenmozhi; Subash Selvaraju; Gilles J. Guillemin

Rotenone a widely used pesticide that inhibits mitochondrial complex I has been used to investigate the pathobiology of PD both in vitro and in vivo. Studies have shown that the neurotoxicity of rotenone may be related to its ability to generate reactive oxygen species (ROS), leading to neuronal apoptosis. The current study was carried out to investigate the neuroprotective effects of hesperidin, a citrus fruit flavanol, against rotenone-induced apoptosis in human neuroblastoma SK-N-SH cells. We assessed cell death, mitochondrial membrane potential, ROS generation, ATP levels, thiobarbituric acid reactive substances, reduced glutathione (GSH) levels, and the activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) using well established assays. Apoptosis was determined in normal, rotenone, and hesperidin treated cells, by measuring the protein expression of cytochrome c (cyt c), caspases 3 and 9, Bax, and Bcl-2 using the standard western blotting technique. The apoptosis in rotenone-induced SK-N-SH cells was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, the depletion of GSH, enhanced activities of enzymatic antioxidants, upregulation of Bax, cyt c, and caspases 3 and 9, and downregulation of Bcl-2, which were attenuated in the presence of hesperidin. Our data suggests that hesperidin exerts its neuroprotective effect against rotenone due to its antioxidant, maintenance of mitochondrial function, and antiapoptotic properties in a neuroblastoma cell line.


Brain Research | 2012

Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson's disease

Annadurai Anandhan; Kuppusamy Tamilselvam; Thangaiyan Radhiga; Shalinee Rao; Musthafa Mohamed Essa; Thamilarasan Manivasagam

Parkinsons disease (PD) is a progressive neurodegenerative disorder, characterized by loss of dopominergic neurons in substantia nigra pars compacta, and can be experimentally induced by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Chronic administration of MPTP/probenecid (MPTP/p) leads to oxidative stress, induction of apoptosis, and loss of dopominergic neurons which results in motor impairments. Epidemiological studies have shown an inverse relationship between tea consumption and susceptibility to PD. Theaflavin is a black tea polyphenol, which possess a wide variety of pharmacological properties including potent anti oxidative, anti apoptotic and anti inflammatory effects. The current study is aimed to assess the effect of theaflavin against MPTP/p induced neurodegenaration in C57BL/6 mice. We found that the theaflavin attenuates MPTP/p induced apoptosis and neurodegeneration as evidenced by increased expression of nigral tyrosine hydroxylase (TH), dopamine transporter (DAT) and reduced apoptotic markers such as caspase-3, 8, 9 accompanied by normalized behavioral characterization. This may be due to anti oxidative and anti apoptotic activity and these data indicate that theaflavin may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative diseases such as PD.


Oxidative Medicine and Cellular Longevity | 2016

The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review.

Shanmugam Manoharan; Gilles J. Guillemin; Rajagopal Selladurai Abiramasundari; Musthafa Mohamed Essa; Mohammed Akbar; Mohammed D. Akbar

Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimers disease (AD), impairments in the movement, Parkinsons disease (PD), and the inability to walk, talk, and think, Huntingtons disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.


Biological Trace Element Research | 2012

Increased markers of oxidative stress in autistic children of the Sultanate of Oman.

Musthafa Mohamed Essa; Gilles J. Guillemin; Mostafa I. Waly; Marwan M. Al-Sharbati; Yahya M. Al-Farsi; Faruck L. Hakkim; Amanat Ali; Mohammed S. Al-Shafaee

Autism spectrum disorder (ASD) is a neurodevelopmental disorder of early childhood, and an enumeration about its etiology and consequences is still limited. Oxidative stress-induced mechanisms are believed to be the major cause for ASD. In this study 19 autistic and 19 age-matched normal Omani children were recruited to analyze their degree of redox status and a prewritten consent was obtained. Blood was withdrawn from subjects in heparin-coated tube, and plasma was separated. Plasma oxidative stress indicators such as nitric oxide (NO), malondialdehyde (MDA), protein carbonyl, and lactate to pyruvate ratio were quantified using commercially available kits. A significant elevation was observed in the levels of NO, MDA, protein carbonyl, and lactate to pyruvate ratio in the plasma of Omani autistic children as compared to their age-matched controls. These oxidative stress markers are strongly associated with major cellular injury and manifest severe mitochondrial dysfunction in autistic pathology. Our results also suggest that oxidative stress might be involved in the pathogenesis of ASD, and these parameters could be considered as diagnostic markers to ensure the prevalence of ASD in Omani children. However, the oxidative stress-induced molecular mechanisms in ASD should be studied in detail.


Neural Regeneration Research | 2014

Neuroprotective effects of berry fruits on neurodegenerative diseases

Selvaraju Subash; Musthafa Mohamed Essa; Samir Al-Adawi; Mushtaq A. Memon; Thamilarasan Manivasagam; Mohammed Akbar

Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegenerative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kaempferol and tannin. In this review, we made an attempt to clearly describe the beneficial effects of various types of berries as promising neuroprotective agents.


Evidence-based Complementary and Alternative Medicine | 2007

Hibiscus sabdariffa Affects Ammonium Chloride-Induced Hyperammonemic Rats

Musthafa Mohamed Essa; P. Subramanian

Hibiscus sabdariffa (HS) is an edible medicinal plant, indigenous to India, China and Thailand and is used in Ayurveda and traditional medicine. Alcoholic extract of HS leaves (HSEt) was studied for its anti-hyperammonemic and antioxidant effects in brain tissues of ammonium chloride-induced hyperammonemic rats. Oral administration of HSEt (250 mg kg−1 body weight) significantly normalizes the levels of ammonia, urea, uric acid, creatinine and non-protein nitrogen in the blood. HSEt significantly reduced brain levels of lipid peroxidation products such as thiobarbituric acid and reactive substances (TBARS) and hydroperoxides (HP). However, the administered extract significantly increased the levels of antioxidants such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) in brain tissues of hyperammonemic rats. This investigation demonstrates significant anti-hyperammonemic and antioxidant activity of HS.


Journal of Traditional and Complementary Medicine | 2014

Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer’s Disease

Selvaraju Subash; Musthafa Mohamed Essa; Abdullah Al-Asmi; Samir Al-Adawi; Ragini Vaishnav; Nady Braidy; Thamilarasan Manivasagam; Gilles J. Guillemin

Oxidative stress may play a key role in Alzheimer′s disease (AD) neuropathology. Pomegranates (石榴 Shí Liú) contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576) were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO) and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione (GSH), and Glutathione S transferase (GST)]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE)] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it.

Collaboration


Dive into the Musthafa Mohamed Essa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samir Al-Adawi

Sultan Qaboos University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nady Braidy

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Mohammed Akbar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge