Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muthu K. Shanmugam is active.

Publication


Featured researches published by Muthu K. Shanmugam.


Bioscience Reports | 2012

Multifaceted link between cancer and inflammation

Gautam Sethi; Muthu K. Shanmugam; Alan Prem Kumar; Vinay Tergaonkar

Increasing evidence from epidemiological, preclinical and clinical studies suggests that dysregulated inflammatory response plays a pivotal role in a multitude of chronic ailments including cancer. The molecular mechanism(s) by which chronic inflammation drives cancer initiation and promotion include increased production of pro-inflammatory mediators, such as cytokines, chemokines, reactive oxygen intermediates, increased expression of oncogenes, COX-2 (cyclo-oxygenase-2), 5-LOX (5-lipoxygenase) and MMPs (matrix metalloproteinases), and pro-inflammatory transcription factors such as NF-κB (nuclear factor κB), STAT3 (signal transducer and activator of transcription 3), AP-1 (activator protein 1) and HIF-1α (hypoxia-inducible factor 1α) that mediate tumour cell proliferation, transformation, metastasis, survival, invasion, angiogenesis, chemoresistance and radioresistance. These inflammation-associated molecules are activated by a number of environmental and lifestyle-related factors including infectious agents, tobacco, stress, diet, obesity and alcohol, which together are thought to drive as much as 90% of all cancers. The present review will focus primarily on the role of various inflammatory intermediates responsible for tumour initiation and progression, and discuss in detail the critical link between inflammation and cancer.


Cancer Letters | 2011

Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer

Radhamani Kannaiyan; Muthu K. Shanmugam; Gautam Sethi

Identification of active constituents and their molecular targets from traditional medicine is an enormous opportunity for modern pharmacology. Celastrol is one such compound that was originally identified from traditional Chinese medicine (Thunder of God Vine) almost three decades ago and generally used for the treatment of inflammatory and auto-immune diseases. Celastrol has attracted great interest recently, especially for its potential anti-inflammatory and anti-cancer activities. The anti-inflammatory effects of this triterpene have been demonstrated in animal models of different inflammatory diseases, including arthritis, Alzheimers disease, asthma, and systemic lupus erythematosus. This triterpene has also been found to inhibit the proliferation of a variety of tumor cells and suppress tumor initiation, promotion and metastasis in various cancer models in vivo. Celastrols ability to modulate the expression of pro-inflammatory cytokines, MHC II, HO-1, iNOS, NF-κB, Notch-1, AKT/mTOR, CXCR4, TRAIL receptors DR4 and DR5, CHOP, JNK, VEGF, adhesion molecules, proteasome activity, topoisomerase II, potassium channels, and heat shock response has been reported. This review describes the various molecular targets of celastrol, cellular responses to celastrol, and animal studies with celastrol in cancer and other inflammatory disorders.


Biochemical Pharmacology | 2013

Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies

Muthu K. Shanmugam; Xiaoyun Dai; Alan Prem Kumar; B. K. H. Tan; Gautam Sethi; Anupam Bishayee

Discovery of bioactive molecules and elucidation of their molecular mechanisms open up an enormous opportunity for the development of improved therapy for different inflammatory diseases, including cancer. Triterpenoids isolated several decades ago from various medicinal plants now seem to have a prominent role in the prevention and therapy of a variety of ailments and some have already entered Phase I clinical trials. One such important and highly investigated pentacyclic triterpenoid, ursolic acid has attracted great attention of late for its potential as a chemopreventive and chemotherapeutic agent in various types of cancer. Ursolic acid has been shown to target multiple proinflammatory transcription factors, cell cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and inflammatory enzymes. These targets can potentially mediate the chemopreventive and therapeutic effects of ursolic acid by inhibiting the initiation, promotion and metastasis of cancer. This review not only summarizes the diverse molecular targets of ursolic acid, but also provides an insight into the various preclinical and clinical studies that have been performed in the last decade with this promising triterpenoid.


Biochimica et Biophysica Acta | 2013

Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma

Aruljothi Subramaniam; Muthu K. Shanmugam; Ekambaram Perumal; Feng Li; Alamelu Nachiyappan; Xiaoyun Dai; Shivananju Nanjunda Swamy; Kwang Seok Ahn; Alan Prem Kumar; B. K. H. Tan; Kam M. Hui; Gautam Sethi

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.


Nutrition and Cancer | 2011

Targeting Cell Signaling and Apoptotic Pathways by Dietary Agents: Role in the Prevention and Treatment of Cancer

Muthu K. Shanmugam; Radhamani Kannaiyan; Gautam Sethi

Cancer is one of the leading causes of death in the United States and around the world. Most modern drug-targeted therapies, besides being enormously expensive, are associated with serious side effects and morbidity. Still, the search continues for an ideal treatment that has minimal side effects and is cost-effective. Indeed, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to prevent and treat cancer. We present evidence on numerous dietary agents identified from fruits and vegetables that act on multiple signal transduction and apoptotic cascades in various tumor cells and animal models. Some of the most interesting and well documented are turmeric (curcumin), resveratrol, silymarin, EGCG, and genistein. This review will provide an insight on the cellular and molecular mechanism(s) by which dietary agents modulate multiple signaling and apoptotic pathways in tumor cells and elucidate the role of these agents in both prevention and treatment of cancer.


Molecules | 2015

The Multifaceted Role of Curcumin in Cancer Prevention and Treatment

Muthu K. Shanmugam; Grishma Rane; Madhu Mathi Kanchi; Frank Arfuso; Arunachalam Chinnathambi; Mohamed E. Zayed; Sulaiman Ali Alharbi; B. K. H. Tan; Alan Prem Kumar; Gautam Sethi

Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.


Cancer Letters | 2013

Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer.

Deepti Shrimali; Muthu K. Shanmugam; Alan Prem Kumar; Jingwen Zhang; B. K. H. Tan; Kwang Seok Ahn; Gautam Sethi

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.


Cancer Letters | 2012

Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer

Muthu K. Shanmugam; An H. Nguyen; Alan Prem Kumar; Benny Kh Tan; Gautam Sethi

Over the last two decades, extensive research on plant-based medicinal compounds has revealed exciting and important pharmacological properties and activities of triterpenoids. Fruits, vegetables, cereals, pulses, herbs and medicinal plants are all considered to be biological sources of these triterpenoids, which have attracted great attention especially for their potent anti-inflammatory and anti-cancer activities. Published reports in the past have described the molecular mechanism(s) underlying the various biological activities of triterpenoids which range from inhibition of acute and chronic inflammation, inhibition of tumor cell proliferation, induction of apoptosis, suppression of angiogenesis and metastasis. However systematic analysis of various pharmacological properties of these important classes of compounds has not been done. In this review, we describe in detail the pre-clinical chemopreventive and therapeutic properties of selected triterpenoids that inhibit multiple intracellular signaling molecules and transcription factors involved in the initiation, progression and promotion of various cancers. Molecular targets modulated by these triterpenoids comprise, cytokines, chemokines, reactive oxygen intermediates, oncogenes, inflammatory enzymes such as COX-2, 5-LOX and MMPs, anti-apoptotic proteins, transcription factors such as NF-κB, STAT3, AP-1, CREB, and Nrf2 (nuclear factor erythroid 2-related factor) that regulate tumor cell proliferation, transformation, survival, invasion, angiogenesis, metastasis, chemoresistance and radioresistance. Finally, this review also analyzes the potential role of novel synthetic triterpenoids identified recently which mimic natural triterpenoids in physical and chemical properties and are moving rapidly from bench to bedside research.


Cancer Letters | 2014

Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence

Muthu K. Shanmugam; Xiaoyun Dai; Alan Prem Kumar; B. K. H. Tan; Gautam Sethi; Anupam Bishayee

Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB, AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases, intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose) polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28 imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent cancer models. These agents are presently under evaluation in phase I studies in cancer patients. This review summarizes the diverse molecular targets of OA and its derivatives and also provides clear evidence on their promising potential in preclinical and clinical situations.


Clinical Cancer Research | 2011

Suppression of Signal Transducer and Activator of Transcription 3 Activation by Butein Inhibits Growth of Human Hepatocellular Carcinoma In Vivo

Peramaiyan Rajendran; Tina H. Ong; Luxi Chen; Feng Li; Muthu K. Shanmugam; Shireen Vali; Taher Abbasi; Shweta Kapoor; Ashish Sharma; Alan Prem Kumar; Kam M. Hui; Gautam Sethi

Purpose: Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third cause of global cancer mortality. Increasing evidence suggest that STAT3 is a critical mediator of oncogenic signaling in HCC and controls the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. Thus, the novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Experimental Design: The effect of butein on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was investigated. The in vivo effect of butein on the growth of human HCC xenograft tumors in male athymic nu/nu mice was also examined. Results: We tested an agent, butein, for its ability to suppress STAT3 activation in HCC cells and nude mice model along with prospectively testing the hypothesis of STAT3 inhibition in a virtual predictive functional proteomics tumor pathway technology platform. We found that butein inhibited both constitutive and inducible STAT3 activation in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src and Janus-activated kinase 2. Butein inhibited proliferation and significantly potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. When administered intraperitoneally, butein inhibited the growth of human HCC xenograft tumors in male athymic nu/nu mice. Conclusions: Overall, cumulative results from experimental and predictive studies suggest that butein exerts its antiproliferative and proapoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo. Clin Cancer Res; 17(6); 1425–39. ©2010 AACR.

Collaboration


Dive into the Muthu K. Shanmugam's collaboration.

Top Co-Authors

Avatar

Gautam Sethi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Alan Prem Kumar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Feng Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kam M. Hui

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanjoormana Aryan Manu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge