Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muthuvel Chelliah is active.

Publication


Featured researches published by Muthuvel Chelliah.


Bulletin of the American Meteorological Society | 1996

The NCEP/NCAR 40-Year Reanalysis Project

Eugenia Kalnay; Masao Kanamitsu; Robert Kistler; William D. Collins; Dennis G. Deaven; Lev S. Gandin; Mark Iredell; Suranjana Saha; Glenn Hazen White; John S. Woollen; Yunshan Zhu; Muthuvel Chelliah; Wesley Ebisuzaki; Wayne Higgins; John E. Janowiak; Kingtse C. Mo; Chester F. Ropelewski; Julian X. L. Wang; Ants Leetmaa; Richard W. Reynolds; Roy L. Jenne; Dennis Joseph

The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by differe...


Bulletin of the American Meteorological Society | 2001

The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation

Robert Kistler; Eugenia Kalnay; William D. Collins; Suranjana Saha; Glenn Hazen White; John S. Woollen; Muthuvel Chelliah; Wesley Ebisuzaki; Masao Kanamitsu; Vernon E. Kousky; Huug van den Dool; Roy L. Jenne; Michael Fiorino

The National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) have cooperated in a project (denoted “reanalysis”) to produce a retroactive record of more than 50 years of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involved the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data. These data were then quality controlled and assimilated with a data assimilation system kept unchanged over the reanalysis period. This eliminated perceived climate jumps associated with changes in the operational (real time) data assimilation system, although the reanalysis is still affected by changes in the observing systems. During the earliest decade (1948–57), there were fewer upper-air data observations and they were made 3 h later than the current main synoptic times (e.g., 0300 UTC), and primarily in the Northern Hemisphere, so that the reanalysis is less reliable than for th later 40 years. The reanalysis data assimilation system continues to be used with current data in real time (Climate Data Assimilation System or CDAS), so that its products are available from 1948 to the present. The products include, in addition to the gridded reanalysis fields, 8-day forecasts every 5 days, and the binary universal format representation (BUFR) archive of the atmospheric observations. The products can be obtained from NCAR, NCEP, and from the National Oceanic and Atmospheric Administration/ Climate Diagnostics Center (NOAA/CDC). (Their Web page addresses can be linked to from the Web page of the NCEP–NCAR reanalysis at http:// wesley.wwb.noaa.gov/Reanalysis.html.) This issue of the Bulletin includes a CD-ROM with a documentation of the NCEP–NCAR reanalysis (Kistler et al. 1999). In this paper we present a brief summary and some highlights of the documentation (also available on the Web at http://atmos.umd.edu/ ~ekalnay/). The CD-ROM, similar to the one issued with the March 1996 issue of the Bulletin, contains 41 yr (1958–97) of monthly means of many reanalysis variables and estimates of precipitation derived from satellite and in situ observations (see the appenThe NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation


Bulletin of the American Meteorological Society | 2010

The NCEP Climate Forecast System Reanalysis

Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming H. Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global oceans latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...


Journal of Climate | 2006

Leading Tropical Modes Associated with Interannual and Multidecadal Fluctuations in North Atlantic Hurricane Activity

Gerald D. Bell; Muthuvel Chelliah

Abstract Interannual and multidecadal extremes in Atlantic hurricane activity are shown to result from a coherent and interrelated set of atmospheric and oceanic conditions associated with three leading modes of climate variability in the Tropics. All three modes are related to fluctuations in tropical convection, with two representing the leading multidecadal modes of convective rainfall variability, and one representing the leading interannual mode (ENSO). The tropical multidecadal modes are shown to link known fluctuations in Atlantic hurricane activity, West African monsoon rainfall, and Atlantic sea surface temperatures, to the Tropics-wide climate variability. These modes also capture an east–west seesaw in anomalous convection between the West African monsoon region and the Amazon basin, which helps to account for the interhemispheric symmetry of the 200-hPa streamfunction anomalies across the Atlantic Ocean and Africa, the 200-hPa divergent wind anomalies, and both the structure and spatial scale ...


Atmosphere-ocean | 1997

Documentation of a highly ENSO‐related sst region in the equatorial pacific: Research note

Anthony G. Bamston; Muthuvel Chelliah; Stanley B. Goldenberg

Abstract A new ENSO SST index is documented that is strongly correlated to the core ENSO phenomenon. The SST anomaly in much of the east‐central and eastern tropical Pacific is closely related to ENSO. However, the anomaly from approximately the centre of the eastern half of the equatorial Pacific westward to near the date line is suggested to be most strongly ENSO‐related when data spanning the most recent several decades are used. This is the case both with respect to (1) strength of association with other oceanic/atmospheric ENSO‐related anomalies (both simultaneously and as a time‐delayed predictand), and (2) impact on remote worldwide climate anomalies. This observational insight was lacking in the early 1980s when the four “Nino” regions were developed. While a firmer dynamical foundation for this regional preference still needs to be established, the region straddling Nino 3 and Nino 4 may be regarded as an appropriate general SST index of the ENSO state by researchers, diagnosticians and forecaste...


Journal of Hydrometeorology | 2005

Atmospheric Moisture Transport over the United States and Mexico as Evaluated in the NCEP Regional Reanalysis

Kingtse C. Mo; Muthuvel Chelliah; Marco L. Carrera; R. Wayne Higgins; Wesley Ebisuzaki

Abstract The large-scale atmospheric hydrologic cycle over the United States and Mexico derived from the 23-yr NCEP regional reanalysis (RR) was evaluated by comparing the RR products with satellite estimates, independent sounding data, and the operational Eta Model three-dimensional variational data assimilation (3DVAR) system (EDAS). In general, the winter atmospheric transport and precipitation are realistic. The climatology and interannual variability of the Pacific, subtropical jet streams, and low-tropospheric moisture transport are well captured. During the summer season, the basic features and the evolution of the North American monsoon (NAM) revealed by the RR compare favorably with observations. The RR also captures the out-of-phase relationship of precipitation as well as the moisture flux convergence between the central United States and the Southwest. The RR is able to capture the zonal easterly Caribbean low-level jet (CALLJ) and the meridional southerly Great Plains low-level jet (GPLLJ). T...


Bulletin of the American Meteorological Society | 1997

Comparison of Tropospheric Temperatures Derived from the NCEP/NCAR Reanalysis, NCEP Operational Analysis, and the Microwave Sounding Unit

Alan Basist; Muthuvel Chelliah

Abstract The Climate Prediction Center has used atmospheric temperatures for data analysis from the National Centers for Environmental Prediction (NCEP) model since 1979. Unfortunately, model changes have adversely affected the stability of the climatologic fields, introducing time-varying biases in the anomaly patterns of the Climate Diagnostic Data Base (CDDB). Fortunately, NCEP has addressed this issue by rerunning a state-of-the-art model using fixed assimilation, parameterization, and physics in order to derive a true climatology and anomalies. The authors compare the previous CDDB temperatures with those derived from the stable reanalysis. Results show major improvements for climate diagnostics and monitoring. Also compared are the reanalysis temperatures with brightness temperature Tb observed by the Microwave Sounding Units (MSU), flown aboard the National Oceanic and Atmospheric Administration (NOAA) series of polar-orbiting satellites (TIROS-N to NOAA-14). This MSU dataset has a precision of abo...


Journal of Climate | 2009

A Statistical Forecast Model for Atlantic Seasonal Hurricane Activity Based on the NCEP Dynamical Seasonal Forecast

Hui Wang; Jae-Kyung E. Schemm; Arun Kumar; Wanqiu Wang; Lindsey N. Long; Muthuvel Chelliah; Gerald D. Bell; Peitao Peng

Abstract A hybrid dynamical–statistical model is developed for predicting Atlantic seasonal hurricane activity. The model is built upon the empirical relationship between the observed interannual variability of hurricanes and the variability of sea surface temperatures (SSTs) and vertical wind shear in 26-yr (1981–2006) hindcasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS). The number of Atlantic hurricanes exhibits large year-to-year fluctuations and an upward trend over the 26 yr. The latter is characterized by an inactive period prior to 1995 and an active period afterward. The interannual variability of the Atlantic hurricanes significantly correlates with the CFS hindcasts for August–October (ASO) SSTs and vertical wind shear in the tropical Pacific and tropical North Atlantic where CFS also displays skillful forecasts for the two variables. In contrast, the hurricane trend shows less of a correlation to the CFS-predicted SSTs and vertical wind shear in...


Journal of Applied Meteorology and Climatology | 2006

The Modified Palmer Drought Severity Index Based on the NCEP North American Regional Reanalysis

Kingtse C. Mo; Muthuvel Chelliah

Abstract A 32-km high-resolution modified Palmer drought severity index (MPDSI) based on the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (RR) from 1979 to 2004 is presented. The assumptions of Palmer, such as the water balance equation, the difference between observed precipitation and the climatologically expected precipitation over the maximum conditions, and the changes of the index as a function of the current index, are preserved. Many deficiencies of the original PDSI are eliminated by taking fields directly from the RR or by making better estimates. For example, fields such as potential evapotranspiration, evaporation, runoff, total soil moisture, and soil moisture change in a given month are obtained directly from the RR. The potential recharge is defined as the total soil moisture needed to reach the maximum total soil moisture at each grid point for each calendar month. The potential precipitation is defined as the maximum precipitation at each grid po...


Journal of Climate | 2006

Seasonal-to-Decadal Predictability and Prediction of North American Climate—The Atlantic Influence

H. M. van den Dool; Peitao Peng; Åke Johansson; Muthuvel Chelliah; Amir Shabbar; Suranjana Saha

The question of the impact of the Atlantic on North American (NA) seasonal prediction skill and predictability is examined. Basic material is collected from the literature, a review of seasonal forecast procedures in Canada and the United States, and some fresh calculations using the NCEP–NCAR reanalysis data. The general impression is one of low predictability (due to the Atlantic) for seasonal mean surface temperature and precipitation over NA. Predictability may be slightly better in the Caribbean and the (sub)tropical Americas, even for precipitation. The NAO is widely seen as an agent making the Atlantic influence felt in NA. While the NAO is well established in most months, its prediction skill is limited. Year-round evidence for an equatorially displaced version of the NAO (named ED_NAO) carrying a good fraction of the variance is also found. In general the predictability from the Pacific is thought to dominate over that from the Atlantic sector, which explains the minimal number of reported Atmospheric Model Intercomparison Project (AMIP) runs that explore Atlantic-only impacts. Caveats are noted as to the question of the influence of a single predictor in a nonlinear environment with many predictors. Skill of a new one-tier global coupled atmosphere–ocean model system at NCEP is reviewed; limited skill is found in midlatitudes and there is modest predictability to look forward to. There are several signs of enthusiasm in the community about using “trends” (low-frequency variations): (a) seasonal forecast tools include persistence of last 10 years’ averaged anomaly (relative to the official 30-yr climatology), (b) hurricane forecasts are based largely on recognizing a global multidecadal mode (which is similar to an Atlantic trend mode in SST), and (c) two recent papers, one empirical and one modeling, giving equal roles to the (North) Pacific and Atlantic in “explaining” variations in drought frequency over NA on a 20 yr or longer time scale during the twentieth century.

Collaboration


Dive into the Muthuvel Chelliah's collaboration.

Top Co-Authors

Avatar

John S. Woollen

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Kingtse C. Mo

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Mark Iredell

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Suranjana Saha

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy L. Jenne

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

David Behringer

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Helin Wei

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Hui-Ya Chuang

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jesse Meng

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge