Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muzaffar Hussain is active.

Publication


Featured researches published by Muzaffar Hussain.


Molecular Microbiology | 1997

Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface

Christine Heilmann; Muzaffar Hussain; Georg Peters; Friedrich Götz

Biofilm formation on a polymer surface which involves initial attachment and accumulation in multilayered cell clusters (intercellular adhesion) is proposed to be the major pathogenicity factor in Staphylococcus epidermidis foreign‐body‐associated infections. We have characterized two distinct classes of biofilm‐negative Tn917 mutants in S. epidermidis affected in initial attachment (class A) or intercellular adhesion (class B). mut1 (class A mutant) lacks five surface‐associated proteins with molecular masses of 120, 60, 52, 45 and 38 kDa and could be complemented by transformation with a 16.4 kb wild‐type DNA fragment. The complemented mutant was able to attach to a polystyrene surface, to form a biofilm, and produced all of the proteins missing from mut1. Subcloning experiments revealed that the 60 kDa protein is sufficient for initial attachment. Immunofluorescence microscopy using an antiserum raised against the 60 kDa protein showed that this protein is located at the cell surface. DNA‐sequence analysis of the complementing region revealed a single open reading frame which consists of 4005 nucleotides and encodes a deduced protein of 1335 amino acids with a predicted molecular mass of 148 kDa. The amino acid sequence exhibits a high similarity (61% identical amino acids) to the atl gene product of Staphylococcus aureus, which represents the major autolysin; therefore the open reading frame was designated atlE. By analogy with the S. aureus autolysin, AtlE is composed of two bacteriolytically active domains, a 60 kDa amidase and a 52 kDa glucosaminidase domain, generated by proteolytic processing. The 120 kDa protein missing from mut1 presumably represents the unprocessed amidase and glucosaminidase domain after proteolytic cleavage of the signal‐ and propeptide. The 45 and 38 kDa proteins are probably the degradation products of the 60 and 52 kDa proteins, respectively. Additionally, AtlE was found to exhibit vitronectin‐binding activity, indicating that AtlE plays a role in binding of the cells not only to a naked polystyrene surface during early stages of adherence, but also to plasma protein‐coated polymer surfaces during later stages of adherence. Our findings provide evidence for a new function of an autolysin (AtlE) in mediating the attachment of bacterial cells to a polymer surface, representing the prerequisite for biofilm formation.


PLOS Pathogens | 2010

Staphylococcus aureus Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils

Bettina Löffler; Muzaffar Hussain; Matthias Grundmeier; Michaela Brück; Dirk Holzinger; Georg Varga; J. Roth; Barbara C. Kahl; Richard A. Proctor; Georg Peters

The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL) in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA) infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs), a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins), induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed) cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.


Molecular Microbiology | 2005

Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation‐associated protein by staphylococcal and host proteases

Holger Rohde; Christoph Burdelski; Katrin Bartscht; Muzaffar Hussain; Friedrich Buck; Matthias A. Horstkotte; Johannes K.-M. Knobloch; Christine Heilmann; Dietrich Mack

Because of its biofilm forming potential Staphylococcus epidermidis has evolved as a leading cause of device‐related infections. The polysaccharide intercellular adhesin (PIA) is significantly involved in biofilm accumulation. However, infections because of PIA‐negative strains are not uncommon, suggesting the existence of PIA‐independent biofilm accumulation mechanisms. Here we found that biofilm formation in the clinically significant S. epidermidis 5179 depended on the expression of a truncated 140 kDa isoform of the 220 kDa accumulation‐associated protein Aap. As expression of the truncated Aap isoform leads to biofilm formation in aap‐negative S. epidermidis 1585, this domain mediates intercellular adhesion in a polysaccharide‐independent manner. In contrast, expression of full‐length Aap did not lead to a biofilm‐positive phenotype. Obviously, to gain adhesive function, full‐length Aap has to be proteolytically processed through staphylococcal proteases as demonstrated by inhibition of biofilm formation by α2‐macroglobulin. Importantly, also exogenously added granulocyte proteases activated Aap, thereby inducing biofilm formation in S. epidermidis 5179 and four additional, independent clinical S. epidermidis strains. It is therefore reasonable to assume that in vivo effector mechanisms of the innate immunity can directly induce protein‐dependent S. epidermidis cell aggregation and biofilm formation, thereby enabling the pathogen to evade clearance by phagocytes.


Embo Molecular Medicine | 2011

Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection

Lorena Tuchscherr; Eva Medina; Muzaffar Hussain; Wolfgang Völker; Vanessa Heitmann; Silke Niemann; Dirk Holzinger; J. Roth; Richard A. Proctor; Karsten Becker; Georg Peters; Bettina Löffler

Staphylococcus aureus is a frequent cause for serious, chronic and therapy‐refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild‐type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long‐term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild‐type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy‐refractive infections.


Nature Medicine | 2002

Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes

Triantafyllos Chavakis; Muzaffar Hussain; Sandip M. Kanse; Georg Peters; Reinhard G. Bretzel; Jan-Ingmar Flock; Klaus T. Preissner

Staphylococcus aureus is a human pathogen that secretes proteins that contribute to bacterial colonization. Here we describe the extracellular adherence protein (Eap) as a novel anti-inflammatory factor that inhibits host leukocyte recruitment. Due to its direct interactions with the host adhesive proteins intercellular adhesion molecule 1 (ICAM-1), fibrinogen or vitronectin, Eap disrupted β2-integrin and urokinase receptor–mediated leukocyte adhesion in vitro. Whereas Eap-expressing S. aureus induced a 2–3-fold lower neutrophil recruitment in bacterial peritonitis in mice as compared with an Eap-negative strain, isolated Eap prevented β2-integrin-dependent neutrophil recruitment in a mouse model of acute thioglycollate-induced peritonitis. Thus, the specific interactions with ICAM-1 and extracellular matrix proteins render Eap a potent anti-inflammatory factor, which may serve as a new therapeutic substance to block leukocyte extravasation in patients with hyperinflammatory pathologies.


Infection and Immunity | 2000

Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

Bhanu Sinha; Patrice Francois; Yok-Ai Que; Muzaffar Hussain; Christine Heilmann; Philippe Moreillon; Daniel Lew; Karl-Heinz Krause; Georg Peters

ABSTRACT Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureusfibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin α5β1 (B. Sinha et al., Cell. Microbiol. 1:101–117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp.cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any knownS. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactisharboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors.


The Journal of Infectious Diseases | 2010

Staphylococcus aureus Small-Colony Variants Are Adapted Phenotypes for Intracellular Persistence

Lorena Tuchscherr; Vanessa Heitmann; Muzaffar Hussain; Dorothee Viemann; J. Roth; Christof von Eiff; Georg Peters; Karsten Becker; Bettina Löffler

BACKGROUND Staphylococcus aureus is an important human pathogen of endovascular diseases, which can take a chronic course with a high relapse rate despite antimicrobial treatment. Thus far, persistent and antibiotic-refractory infections have been largely associated with a subpopulation of S. aureus, the small-colony variants (SCVs). METHODS In this work, we used endothelial cells to investigate infection with the highly virulent wild-type isolate (6850), 2 stable isogenic SCV phenotypes (hemB mutant IIb13 and JB1), and the complemented mutant. RESULTS All strains were highly invasive in endothelial cells but largely differed in host response induction. Microarray analysis showed that wild-type phenotypes up-regulated a large number of endothelial genes (including genes involved in innate immunity), whereas the SCVs did not cause these dramatic changes. The inflammatory response and cytotoxicity were strongest shortly after infection and largely decreased within the following days, which was accompanied by a fast elimination of intracellular wild-type bacteria. By contrast, SCVs survived within endothelial cells at high numbers. CONCLUSION S. aureus intracellular persistence via the development of an adapted subpopulation of SCVs most likely represents an important strategy of S. aureus to hide within the host cells, which could be a reservoir for chronic infections.


Journal of Bacteriology | 2001

Identification and Characterization of a Novel 38.5-Kilodalton Cell Surface Protein of Staphylococcus aureus with Extended-Spectrum Binding Activity for Extracellular Matrix and Plasma Proteins

Muzaffar Hussain; Karsten Becker; Christof von Eiff; Jacques Schrenzel; Georg Peters

The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureus disease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR, emp was demonstrated in all 240 S. aureus isolates of a defined clinical strain collection as well as in 6 S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a K(d) of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureus pathogenicity.


Infection and Immunity | 2004

Truncation of Fibronectin-Binding Proteins in Staphylococcus aureus Strain Newman Leads to Deficient Adherence and Host Cell Invasion Due to Loss of the Cell Wall Anchor Function

Matthias Grundmeier; Muzaffar Hussain; Petra Becker; Christine Heilmann; Georg Peters; Bhanu Sinha

ABSTRACT Staphylococcus aureus fibronectin-binding proteins (FnBPs) play a critical role in S. aureus pathogenesis. FnBPs mediate adhesion to fibronectin and invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, by fibronectin bridging to the host cell fibronectin receptor integrin (α5)β1. Strain Newman is a laboratory strain frequently used for genetic, functional, and in vivo studies. However, despite pronounced production of FnBPs, strain Newman is only weakly adherent to immobilized Fn and weakly invasive. We examined whether these effects are due to a structural difference of FnBPs. Here, we show that both fnbANewman and fnbBNewman contain a centrally located point mutation resulting in a stop codon. This leads to a truncation of both FnBPs at the end of the C domain at identical positions. Most likely, the stop codon occurred first in fnbBNewman and was subsequently transferred to fnbANewman by replacement of the entire region encompassing the C, D, and W domains with the respective sequence of fnbBNewman. Using heterologous expression in Staphylococcus carnosus, we found that truncated FnBPs were completely secreted into the culture medium and not anchored to the cell wall, since they lack the sortase motif (LPETG). Consequently, this led to a loss of FnBP-dependent functions, such as strong adhesion to immobilized fibronectin, binding of fibrinogen, and host cell invasion. This mutation may explain some of the earlier reported conflicting data with strain Newman. Thus, care should be taken when drawing negative conclusions about the role of FnBPs as a virulence factor in a given model.


Infection and Immunity | 2005

The Multifunctional Staphylococcus aureus Autolysin Aaa Mediates Adherence to Immobilized Fibrinogen and Fibronectin

Christine Heilmann; Jörg Hartleib; Muzaffar Hussain; Georg Peters

ABSTRACT Staphylococci can cause a wide spectrum of infections, including endocarditis, osteomyelitis, and sepsis, which is reflected by the numerous virulence factors they produce, among them a recently identified new class of adhesins, namely, the multifunctional autolysins/adhesins. Here we report the identification and molecular characterization of Aaa, a novel autolysin/adhesin from Staphylococcus aureus. The gene encoding Aaa was cloned from the clinical isolate Staphylococcus aureus 4074. DNA sequence analysis revealed that aaa encodes a deduced protein of 334 amino acids with a predicted molecular mass of 35.8 kDa. Aaa contains three N-terminal repetitive sequences that comprise features of a peptidoglycan-binding domain, the LysM domain. The expression of aaa by Escherichia coli and its subsequent characterization revealed that Aaa possesses bacteriolytic activity as well as adhesive properties, such as binding to extracellular matrix proteins. Real-time biomolecular interaction analysis demonstrated that the interaction of Aaa with fibrinogen, fibronectin, and vitronectin is dose dependent and saturable and occurs with a high affinity. Furthermore, we demonstrate that Aaa binds to the Aα and Bβ chains of fragment D of fibrinogen. Immunofluorescence microscopy revealed that Aaa is located at the cell surface. Finally, an aaa knockout mutant showed reduced adherence to surface-adsorbed fibrinogen and fibronectin, strongly suggesting a role for Aaa in the colonization of host factor-coated polymer surfaces and/or host tissue.

Collaboration


Dive into the Muzaffar Hussain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhanu Sinha

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhanu Sinha

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge