Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muzaffer Cicek is active.

Publication


Featured researches published by Muzaffer Cicek.


Cancer and Metastasis Reviews | 2007

Breast cancer bone metastasis and current small therapeutics.

Muzaffer Cicek; Merry Jo Oursler

Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by increased osteoclast activity. Osteolysis releases bone-bound growth factors including transforming growth factor beta (TGF-β). The widely accepted model of osteolytic bone metastasis in breast cancer is based on the hypothesis that the TGF-β released during osteolytic lesion development stimulates tumor cell parathyroid hormone related protein (PTHrP), causing stromal cells to secrete receptor activator of NFκB ligand (RANKL), thus increasing osteoclast differentiation. Elevated osteoclast numbers results in increased bone resorption, leading to more TGF-β being released from bone. This interaction between tumor cells and the bone microenvironment results in a vicious cycle of bone destruction and tumor growth. Bisphosphonates are commonly prescribed small molecule therapeutics that target tumor-driven osteoclastic activity in osteolytic breast cancers. In addition to bisphosphonate therapies, steroidal and non-steroidal antiestrogen and adjuvant therapies with aromatase inhibitors are additional small molecule therapies that may add to the arsenal for treatment of osteolytic breast cancer. This review focuses on a brief discussion of tumor-driven osteolysis and the effects of small molecule therapies in reducing osteolytic tumor progression.


Clinical & Experimental Metastasis | 2009

BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-κB binding site of the uPA promoter

Muzaffer Cicek; Ryuichi Fukuyama; Mine S. Cicek; Steven T. Sizemore; Danny R. Welch; Nywana Sizemore; Graham Casey

The BRMS1 metastasis suppressor was recently shown to negatively regulate NF-κB signaling and down regulate NF-κB-dependent uPA expression. Here we confirm that BRMS1 expression correlates with reduced NF-κB DNA binding activity in independently derived human melanoma C8161.9 cells stably expressing BRMS1. We show that knockdown of BRMS1 expression in these cells using small interfering RNA (siRNA) leads to the reactivation of NF-κB DNA binding activity and re-expression of uPA. Further, we confirm that BRMS1 expression does not alter IKKβ kinase activity suggesting that BRMS1-dependent uPA regulation does not occur through inhibition of the classical upstream activators of NF-κB. BRMS1 has been implicated as a corepressor of HDAC1 and consistent with this, we show that BRMS1 promotes HDAC1 recruitment to the NF-κB binding site of the uPA promoter and is associated with reduced H3 acetylation. We also confirm that BRMS1 expression stimulates disassociation of p65 from the NF-κB binding site of the uPA promoter consistent with its reduced DNA binding activity. These data suggest that BRMS1 recruits HDAC1 to the NF-κB binding site of the uPA promoter, modulates histone acetylation of p65 on the uPA promoter, leading to reduced NF-κB binding activity on its consensus sequence, and reduced transactivation of uPA expression.


PLOS ONE | 2011

TGF-β Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

Muzaffer Cicek; Anne M. Vrabel; Catherine Sturchio; Larry Pederson; John R. Hawse; Malayannan Subramaniam; Thomas C. Spelsberg; Merry Jo Oursler

TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1−/− mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1−/− osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1−/− precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1−/− osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1−/− osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1−/− cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1−/− precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling.


Cancer Research | 2007

2-Methoxyestradiol Suppresses Osteolytic Breast Cancer Tumor Progression In vivo

Muzaffer Cicek; Urszula T. Iwaniec; Anne M. Vrabel; Ming Ruan; Denis R. Clohisy; Russell R. Turner; Merry Jo Oursler

2-Methoxyestradiol (2ME(2)), a physiologic metabolite of 17beta-estradiol (estrogen), has emerged as a promising cancer therapy because of its potent growth-inhibitory and proapoptotic effects on both endothelial and tumor cells. 2ME(2) also suppresses osteoclast differentiation and induces apoptosis of mature osteoclasts, and has been shown to effectively repress bone loss in an animal model of postmenopausal osteoporosis. Given these observations, we have examined whether 2ME(2) could effectively target metastasis to bone, osteolytic tumors, and soft tissue tumors. A 4T1 murine metastatic breast cancer cell line was generated that stably expressed Far Red fluorescence protein (4T1/Red) to visualize tumor development and metastasis to bone. In an intervention study, 4T1/Red cells were injected into bone marrow of the left femur and the mammary pad. In the latter study, 2ME(2) (10, 25, and 50 mg/kg/d) treatment began on the same day as surgery and was continued for the 16-day duration of study. Tumor cell growth and metastasis to bone were monitored and bone volume was determined by micro-computed tomography. 2ME(2) inhibited tumor growth in soft tissue, metastasis to bone, osteolysis, and tumor growth in bone, with maximum effects at 50 mg/kg/d. Furthermore, tumor-induced osteolysis was significantly reduced in mice receiving 2ME(2). In vitro, 2ME(2) repressed osteoclast number by inducing apoptosis of osteoclast precursors as well as mature osteoclasts. Our data support the conclusion that 2ME(2) could be an important new therapy in the arsenal to fight metastatic breast cancer.


Journal of Cellular Biochemistry | 2012

Development, characterization, and applications of a novel estrogen receptor beta monoclonal antibody.

Xianglin Wu; Malayannan Subramaniam; Vivian Negron; Muzaffer Cicek; Carol Reynolds; Wilma L. Lingle; Matthew P. Goetz; James N. Ingle; Thomas C. Spelsberg; John R. Hawse

The role of estrogen receptor alpha (ERα) in breast cancer has been studied extensively, and its protein expression is prognostic and a primary determinant of endocrine sensitivity. However, much less is known about the role of ERβ and its relevance remains unclear due to the publication of conflicting reports. Here, we provide evidence that much of this controversy may be explained by variability in antibody sensitivity and specificity and describe the development, characterization, and potential applications of a novel monoclonal antibody targeting full‐length human ERβ and its splice variant forms. Specifically, we demonstrate that a number of commercially available ERβ antibodies are insensitive for ERβ and exhibit significant cross‐reaction with ERα. However, our newly developed MC10 ERβ antibody is shown to be highly specific and sensitive for detection of full‐length ERβ and its variant forms. Strong and variable staining patterns for endogenous levels of ERβ protein were detected in normal human tissues and breast tumors using the MC10 antibody. Importantly, ERβ was shown to be expressed in a limited cohort of both ERα positive and ERα negative breast tumors. Taken together, these data demonstrate that the use of poorly validated ERβ antibodies is likely to explain much of the controversy in the field with regard to the biological relevance of ERβ in breast cancer. The use of the MC10 antibody, in combination with highly specific antibodies targeting only full‐length ERβ, is likely to provide additional discriminatory features in breast cancers that may be useful in predicting response to therapy. J. Cell. Biochem. 113: 711–723, 2012.


PLOS ONE | 2013

Endoxifen’s Molecular Mechanisms of Action Are Concentration Dependent and Different than That of Other Anti-Estrogens

John R. Hawse; Malayannan Subramaniam; Muzaffer Cicek; Xianglin Wu; Anne Gingery; Sarah B. Grygo; Zhifu Sun; Kevin S. Pitel; Wilma L. Lingle; Matthew P. Goetz; James N. Ingle; Thomas C. Spelsberg

Endoxifen, a cytochrome P450 mediated tamoxifen metabolite, is being developed as a drug for the treatment of estrogen receptor (ER) positive breast cancer. Endoxifen is known to be a potent anti-estrogen and its mechanisms of action are still being elucidated. Here, we demonstrate that endoxifen-mediated recruitment of ERα to known target genes differs from that of 4-hydroxy-tamoxifen (4HT) and ICI-182,780 (ICI). Global gene expression profiling of MCF7 cells revealed substantial differences in the transcriptome following treatment with 4HT, endoxifen and ICI, both in the presence and absence of estrogen. Alterations in endoxifen concentrations also dramatically altered the gene expression profiles of MCF7 cells, even in the presence of clinically relevant concentrations of tamoxifen and its metabolites, 4HT and N-desmethyl-tamoxifen (NDT). Pathway analysis of differentially regulated genes revealed substantial differences related to endoxifen concentrations including significant induction of cell cycle arrest and markers of apoptosis following treatment with high, but not low, concentrations of endoxifen. Taken together, these data demonstrate that endoxifen’s mechanism of action is different from that of 4HT and ICI and provide mechanistic insight into the potential importance of endoxifen in the suppression of breast cancer growth and progression.


PLOS ONE | 2011

TIEG1/KLF10 modulates runx2 expression and activity in osteoblasts

John R. Hawse; Muzaffer Cicek; Sarah B. Grygo; Elizabeth S. Bruinsma; Nalini M. Rajamannan; Andre J. Van Wijnen; Jane B. Lian; Gary S. Stein; Merry Jo Oursler; Malayannan Subramaniam; Thomas C. Spelsberg

Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFβ1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype.


Journal of Bone and Mineral Research | 2014

TGFβ Inducible Early Gene-1 Plays an Important Role in Mediating Estrogen Signaling in the Skeleton

John R. Hawse; Kevin S. Pitel; Muzaffer Cicek; Kenneth A. Philbrick; Anne Gingery; Kenneth D Peters; Farhan A. Syed; James N. Ingle; Vera J. Suman; Urszula T. Iwaniec; Russell T. Turner; Thomas C. Spelsberg; Malayannan Subramaniam

TGFβ Inducible Early Gene‐1 (TIEG1) knockout (KO) mice display a sex‐specific osteopenic phenotype characterized by low bone mineral density, bone mineral content, and overall loss of bone strength in female mice. We, therefore, speculated that loss of TIEG1 expression would impair the actions of estrogen on bone in female mice. To test this hypothesis, we employed an ovariectomy (OVX) and estrogen replacement model system to comprehensively analyze the role of TIEG1 in mediating estrogen signaling in bone at the tissue, cell, and biochemical level. Dual‐energy X‐ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro‐CT analyses revealed that loss of TIEG1 expression diminished the effects of estrogen throughout the skeleton and within multiple bone compartments. Estrogen exposure also led to reductions in bone formation rates and mineralizing perimeter in wild‐type mice with little to no effects on these parameters in TIEG1 KO mice. Osteoclast perimeter per bone perimeter and resorptive activity as determined by serum levels of CTX‐1 were differentially regulated after estrogen treatment in TIEG1 KO mice compared with wild‐type littermates. No significant differences were detected in serum levels of P1NP between wild‐type and TIEG1 KO mice. Taken together, these data implicate an important role for TIEG1 in mediating estrogen signaling throughout the mouse skeleton and suggest that defects in this pathway are likely to contribute to the sex‐specific osteopenic phenotype observed in female TIEG1 KO mice.


Nucleic Acids Research | 2017

TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone

Malayannan Subramaniam; Muzaffer Cicek; Kevin S. Pitel; Elizabeth S. Bruinsma; Molly H. Nelson Holte; Sarah G. Withers; Nalini M. Rajamannan; Frank J. Secreto; K. Venuprasad; John R. Hawse

Abstract We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.


PLOS ONE | 2014

The Effects of a Novel Hormonal Breast Cancer Therapy, Endoxifen, on the Mouse Skeleton

Anne Gingery; Malayannan Subramaniam; Kevin S. Pitel; Jordan M. Reese; Muzaffer Cicek; Laurence B. Lindenmaier; James N. Ingle; Matthew P. Goetz; Russell T. Turner; Urszula T. Iwaniec; Thomas C. Spelsberg; John R. Hawse

Endoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton. Two month old ovariectomized C57BL/6 mice were treated with vehicle or 50 mg/kg/day endoxifen hydrochloride via oral gavage for 45 days. Animals were analyzed by dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, micro-computed tomography and histomorphometry. Serum from control and endoxifen treated mice was evaluated for bone resorption and bone formation markers. Gene expression changes were monitored in osteoblasts, osteoclasts and the cortical shells of long bones from endoxifen treated mice and in a human fetal osteoblast cell line. Endoxifen treatment led to significantly higher bone mineral density and bone mineral content throughout the skeleton relative to control animals. Endoxifen treatment also resulted in increased numbers of osteoblasts and osteoclasts per tissue area, which was corroborated by increased serum levels of bone formation and resorption markers. Finally, endoxifen induced the expression of osteoblast, osteoclast and osteocyte marker genes. These studies are the first to examine the in vivo and in vitro impacts of endoxifen on bone and our results demonstrate that endoxifen increases cancellous as well as cortical bone mass in ovariectomized mice, effects that may have implications for postmenopausal breast cancer patients.

Collaboration


Dive into the Muzaffer Cicek's collaboration.

Researchain Logo
Decentralizing Knowledge