Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muzamil Ashraf Makhdoomi is active.

Publication


Featured researches published by Muzamil Ashraf Makhdoomi.


Medicine | 2016

IL-8 Alterations in HIV-1 Infected Children With Disease Progression

Ambili Nair Pananghat; Heena Aggarwal; Somi Sankaran Prakash; Muzamil Ashraf Makhdoomi; Ravinder Singh; Rakesh Lodha; Shakir Ali; M. Srinivas; Bimal K. Das; Ravindra Mohan Pandey; Sushil K. Kabra; Kalpana Luthra

AbstractDisease progression in HIV-1 infected children is faster than in adults. Less than 5% of the infected children maintain stable CD4 counts beyond 7 years of infection and are termed long-term nonprogressors (LTNPs). Delineating the host immune response in antiretroviral naïve (ART) and treated HIV-1 infected children at different disease stages will help in understanding the immunopathogenesis of the disease.A total of 79 asymptomatic, perinatally HIV-1 infected children (50 ART naïve and 29 ART treated) and 8 seronegative donors were recruited in this study. T- and B-cell activation PCR arrays were performed from the cDNA, using total RNA extracted from the peripheral blood mononuclear cells (PBMCs) of 14 HIV-1 infected children at different stages of the disease. The differentially expressed genes were identified. Quantitative RT-PCR was performed for the (interleukin-8) IL-8 gene and its transcriptional mediators, that is, SHP2, GRB2, and IL-8R (IL-8 receptor/CXCR1). Plasma levels of IL-8 were measured by flow cytometry.Gene array data revealed a higher expression of IL-8 in the ART naïve HIV-1 infected progressors and in ART nonresponders than LTNPs and ART responders, respectively. Quantitative RT-PCR analysis demonstrated a significant higher expression of IL-8 (P < 0.001), its receptor CXCR1 (P = 0.03) and the upstream signaling molecule SHP2 (P = 0.04) in the progressors versus LTNPs. Plasma levels of IL-8 were significantly higher in progressors versus LTNPs (P < 0.001), and ART nonresponders versus ART responders (P < 0.001). A significant negative correlation of plasma levels of IL-8 with CD4 counts (cells/&mgr;L) was observed in HIV-1 infected ART naïve subjects (r = −0.488; P < 0.001), while the IL-8 levels positively correlated with viral load in the ART treated children (r = 0.5494; P < 0.001). ART naïve progressors on follow up demonstrated a significant reduction in the mRNA expression (P = 0.05) and plasma levels of IL-8 (P = 0.05) post 6 months of ART initiation suggesting the beneficial role of ART therapy in reducing inflammation in infected children.Our data suggest that IL-8 may serve as a potential prognostic marker in adjunct with CD4 counts to monitor disease progression in the HIV-1 infected children and the efficacy of ART.


PLOS ONE | 2015

Identification of CD4-Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual.

Lubina Khan; Muzamil Ashraf Makhdoomi; Sanjeev Kumar; Ambili Nair; Raiees Andrabi; Brenda E. Clark; Kate Auyeung; Jayanta Bhattacharya; Madhu Vajpayee; Naveet Wig; Ralph Pantophlet; Kalpana Luthra

Dissecting antibody specificities in the plasma of HIV-1 infected individuals that develop broadly neutralizing antibodies (bNAbs) is likely to provide useful information for refining target epitopes for vaccine design. Several studies have reported CD4-binding site (CD4bs) antibodies as neutralization determinants in the plasma of subtype B-infected individuals; however there is little information on the prevalence of CD4bs specificities in HIV-infected individuals in India. Here, we report on the presence of CD4bs antibodies and their contribution to virus neutralization in the plasma from a cohort of HIV-1 infected Indian individuals. Plasma from 11 of the 140 HIV-1 infected individuals (7.9%) studied here exhibited cross-neutralization activity against a panel of subtype B and C viruses. Analyses of these 11 plasma samples for the presence of CD4bs antibodies using two CD4bs-selective probes (antigenically resurfaced HXB2gp120 core protein RSC3 and hyperglycosylated JRFLgp120 mutant ΔN2mCHO) revealed that five (AIIMS 617, 619, 627, 642, 660) contained RSC3-reactive plasma antibodies and only one (AIIMS 660) contained ΔN2mCHO-reactive antibodies. Plasma antibody depletion and competition experiments confirmed that the neutralizing activity in the AIIMS 660 plasma was dependent on CD4bs antibodies. To the best of our knowledge, this is the first study to report specifically on the presence of CD4bs antibodies in the plasma of a cohort of HIV-1 infected Indian donors. The identification of CD4bs dependent neutralizing antibodies in an HIV-1 infected Indian donor is a salient finding of this study and is supportive of ongoing efforts to induce similar antibodies by immunization.


Viruses | 2015

Mutations in the reverse transcriptase and protease genes of human immunodeficiency virus-1 from antiretroviral naïve and treated pediatric patients.

Dinesh Bure; Muzamil Ashraf Makhdoomi; Rakesh Lodha; Somi Sankaran Prakash; Rajesh Kumar; Hilal Ahmad Parray; Ravinder Singh; Sushil K. Kabra; Kalpana Luthra

The success of highly active antiretroviral therapy (HAART) is challenged by the emergence of resistance-associated mutations in human immunodeficiency virus-1 (HIV-1). In this study, resistance associated mutations in the reverse transcriptase (RT) and protease (PR) genes in antiretroviral therapy (ART) naïve and treated HIV-1 infected pediatric patients from North India were evaluated. Genotyping was successfully performed in 46 patients (30 ART naive and 16 treated) for the RT gene and in 53 patients (27 ART naive and 26 treated) for PR gene and mutations were identified using Stanford HIV Drug Resistance Database. A major drug resistant mutation in RT gene, L74I (NRTI), and two such mutations, K101E and G190A (NNRTI), were observed in two ART naïve patients, while M184V was detected in two ART treated patients. Overall, major resistance associated mutations in RT gene were observed in nine (30%) and seven (36%) of ART naïve and treated children respectively. Minor mutations were identified in PR gene in five children. Few non-clade C viral strains (≈30%) were detected, although subtype C was most predominant. The screening of ART naïve children for mutations in HIV-1 RT and protease genes, before and after initiation of ART is desirable for drug efficacy and good prognosis.


Scientific Reports | 2017

Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library

Lubina Khan; Rajesh Kumar; Hilal Ahmad Parray; Muzamil Ashraf Makhdoomi; Sanjeev Kumar; Heena Aggarwal; Madhav Mohata; Abdul Wahid Hussain; Raksha Das; Raghavan Varadarajan; Jayanta Bhattacharya; Madhu Vajpayee; Murugavel Kg; Suniti Solomon; Subrata Sinha; Kalpana Luthra

More than 50% of HIV-1 infection globally is caused by subtype_C viruses. Majority of the broadly neutralizing antibodies (bnAbs) targeting HIV-1 have been isolated from non-subtype_C infected donors. Mapping the epitope specificities of bnAbs provides useful information for vaccine design. Recombinant antibody technology enables generation of a large repertoire of monoclonals with diverse specificities. We constructed a phage recombinant single chain variable fragment (scFv) library with a diversity of 7.8 × 108 clones, using a novel strategy of pooling peripheral blood mononuclear cells (PBMCs) of six select HIV-1 chronically infected Indian donors whose plasma antibodies exhibited potent cross neutralization efficiency. The library was panned and screened by phage ELISA using trimeric recombinant proteins to identify viral envelope specific clones. Three scFv monoclonals D11, C11 and 1F6 selected from the library cross neutralized subtypes A, B and C viruses at concentrations ranging from 0.09 μg/mL to 100 μg/mL. The D11 and 1F6 scFvs competed with mAbs b12 and VRC01 demonstrating CD4bs specificity, while C11 demonstrated N332 specificity. This is the first study to identify cross neutralizing scFv monoclonals with CD4bs and N332 glycan specificities from India. Cross neutralizing anti-HIV-1 human scFv monoclonals can be potential candidates for passive immunotherapy and for guiding immunogen design.


Virology | 2016

Neutralization resistant HIV-1 primary isolates from antiretroviral naïve chronically infected children in India

Muzamil Ashraf Makhdoomi; Deepti Singh; Ambili Nair Pananghat; Rakesh Lodha; Sushil K. Kabra; Kalpana Luthra

Anti-HIV-1 broadly neutralizing antibodies (bnAbs) have been extensively tested against pesudoviruses of diverse strains. We generated and characterized HIV-1 primary isolates from antiretroviral naïve infected Indian children, and determined their susceptibility to known NAbs. All the 8 isolates belonged to subtype-C and were R5 tropic. Majority of these viruses were resistant to neutralization by NAbs, suggesting that the bnAbs, known to efficiently neutralize pseudoviruses (adult and pediatric) of different strains, are less effective against pediatric primary isolates. Interestingly, AIIMS_329 isolate displayed high susceptibility to neutralization by PG9 and PG16bnAbs, with IC50 titer of 1.3 and 0.97μg/ml, suggesting exposure of this epitope on this virus. All isolates except AIIMS_506 were neutralized by contemporaneous plasma antibodies. Our findings suggest that primary isolates, due to close resemblance to viruses in natural infection, should be used to evaluate NAbs as effective vaccine candidates in both children and adults.


Journal of General Virology | 2017

Evolution of cross-neutralizing antibodies and mapping epitope specificity in plasma of chronic HIV-1-infected antiretroviral therapy-naïve children from India

Muzamil Ashraf Makhdoomi; Lubina Khan; Sanjeev Kumar; Heena Aggarwal; Ravinder Singh; Rakesh Lodha; Mohit Singla; Bimal K. Das; Sushil K. Kabra; Kalpana Luthra

Delineating the factors leading to the development of broadly neutralizing antibodies (bnAbs) during natural HIV-1 infection and dissecting their epitope specificities generates useful information for vaccine design. This is the first longitudinal study to assess the plasma-neutralizing antibody response and neutralizing determinants in HIV-1-infected children from India. We enrolled 26 and followed up 20 antiretroviral therapy (ART)-naïve, asymptomatic, chronic HIV-1-infected children. Five (19.2 %) baseline and 10 (50 %) follow-up plasma samples neutralized ≥50 % of subtypes A, B and C tier 2 viruses at an ID50 titre ≥150. A modest improvement in neutralization breadth and potency was observed with time. At baseline, subtype C-specific neutralization predominated (P=0.026); interestingly, follow-up samples exhibited cross-neutralizing activity. Epitope mapping revealed V3C reactive antibodies with significantly increased Max50 binding titres in follow-up samples from five infected children; patient #4s plasma antibodies exhibited V3-directed neutralization. A salient observation was the presence of CD4 binding site (CD4bs)-specific NAbs in patient #18 that improved with time (1.76-fold). The RSC3 wild-type (RSC3WT) protein-depleted plasma eluate of patient #18 demonstrated a more than 50% ID50 decrease in neutralization capacity against five HIV-1 pseudoviruses. Further, the presence of CD4bs-neutralizing determinants in patient #18s plasma was confirmed by the neutralizing activity demonstrated by the CD4bs-directed IgG fraction purified from this plasma, and competition with sCD4 against JRFLgp120, identifying this paediatric donor as a potential candidate for the isolation of CD4bs-directed bnAbs. Overall, we observed a relative increase in plasma-neutralizing activity with time in HIV-1-infected children, which suggests that the bnAbs evolve.


BMC Infectious Diseases | 2014

Production of cross neutralizing single chain fragment variables (scFv) from HIV-1 infected Indian children

Sanjeev Kumar; Rajesh Kumar; Muzamil Ashraf Makhdoomi; Lubina Khan; Somi Sankaran Prakash; Mohit Singla; Rakesh Lodha; Sushil K. Kabra; Subrata Sinha; Kalpana Luthra

Methods Nine ART drug naive HIV-1 subtype c infected children were recruited. PBMCs were isolated from all the subjects and pooled. RNA was isolated and cDNA was synthesized followed by amplification of VH and VL chain genes and scFv construction. A human recombinant scFv phage display library of 108 clones was constructed. Diversity of the phage library was checked by DNA sequencing and biopanned with RSC3 core antigen. 60 random clones were screened by phage ELISA. Expression of the scFvs was assessed by SDS-PAGE and Western blotting.


Frontiers in Immunology | 2017

Alterations in B Cell Compartment Correlate with Poor Neutralization Response and Disease Progression in HIV-1 Infected Children

Heena Aggarwal; Lubina Khan; Omkar Chaudhary; Sanjeev Kumar; Muzamil Ashraf Makhdoomi; Ravinder Singh; Kanika Sharma; Nitesh Mishra; Rakesh Lodha; M. Srinivas; Bimal K. Das; Sushil K. Kabra; Kalpana Luthra

Several B cell defects are reported in HIV-1 infected individuals including variation in B cell subsets, polyclonal B cell activation and exhaustion, with broadly neutralizing antibodies elicited in less than 10–20% of the infected population. HIV-1 disease progression is faster in children than adults. B Lymphocyte Stimulator (BLyS), expressed on dendritic cells (DCs), is a key regulator of B cell homeostasis. Understanding how DCs influence B cell phenotype and functionality (viral neutralization), thereby HIV-1 disease outcome in infected children, is important to develop interventional strategies for restoration of B cell function. In this study, a total of 38 vertically transmitted HIV-1 infected antiretroviral therapy (ART) naïve children and 25 seronegative controls were recruited. Based on the CD4 counts and years post-infection, infected children were categorized as long-term non-progressors (LTNPs) (n = 20) and progressors (n = 18). Eight of these progressors were followed up at 6–12 months post-ART. Percentages (%) of DCs, B cell subsets, and expression of BLyS on DCs were analyzed by flow-cytometry. Plasma levels of B cell growth factors were measured by ELISA and viral neutralization activity was determined using TZM-bl assay. Lower (%) of myeloid DCs (mDCs), plasmacytoid DCs, and high expression of BLyS on mDCs were observed in HIV-1 infected progressors than seronegative controls. Progressors showed lower % of naive B cells, resting memory B cells and higher % of mature activated, tissue-like memory B cells as compared to seronegative controls. Higher plasma levels of IL-4, IL-6, IL-10, and IgA were observed in progressors vs. seronegative controls. Plasma levels of IgG were high in progressors and in LTNPs than seronegative controls, suggesting persistence of hypergammaglobulinemia at all stages of disease. High plasma levels of BLyS in progressors positively correlated with poor viral neutralizing activity. Interestingly on follow up, treatment naïve progressors, post-ART showed increase in resting memory B cells along with reduction in plasma BLyS levels that correlated with improvement in viral neutralization. This is the first study to demonstrate that reduction in plasma BLyS levels correlates with restoration of B cell function, in terms of viral neutralization in HIV-1-infected children.


Frontiers in Immunology | 2017

CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children

Sanjeev Kumar; Rajesh Kumar; Lubina Khan; Muzamil Ashraf Makhdoomi; Madhav Mohata; Mudit Agarwal; Rakesh Lodha; Sushil K. Kabra; Subrata Sinha; Kalpana Luthra

Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally and more than 90% infections in India. To date, there is no effective vaccine against HIV-1. Recent animal studies and human Phase I trials showed promising results of the protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly conserved region, comprised of a conformational epitope, and is a potential target of bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs can access masked epitopes due to their small size and have shown the potential to inhibit viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neutralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at an early stage of HIV-1 infection and prevent disease progression.


bioRxiv | 2018

An HIV-1 broadly neutralizing antibody from a clade C infected pediatric elite neutralizer potently neutralizes the contemporaneous and autologous evolving viruses

Sanjeev Kumar; Harekrushna Panda; Muzamil Ashraf Makhdoomi; Nitesh Mishra; Haaris Ahsan Safdari; Heena Aggarwal; Elluri Seetharami Reddy; Rakesh Lodha; Sushil K. Kabra; Anmol Chandele; Somnath Dutta; Kalpana Luthra

Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite-neutralizers are potential candidates for isolation of HIV-1 bNAbs and coexistence of bNAbs such as BG18 with neutralization susceptible autologous viruses in an HIV-1 infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1 infected children than adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral naïve HIV-1 clade C chronically infected pediatric elite neutralizer AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, median inhibitory dilution (ID50) value of 1246 and presence of N160 and N332-supersite dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332-supersite dependent bNAb AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses; exhibited substantial indels despite limited somatic hypermutations; interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy and demonstrated high binding affinity. In addition, AIIMS-P01 potently neutralized the coexisting and evolving autologous viruses suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in AIIMS_330 pediatric elite neutralizer. Further studies on such pediatric elite-neutralizers and isolation of novel HIV-1 pediatric bNAbs may provide newer insights to guide vaccine design. Importance More than 50% of the HIV-1 infections globally are caused by clade C viruses. Till date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are underway to design immunogens that can elicit correlates of protection upon vaccination. Here we report the isolation and characterization of an HIV-1 N332-supersite dependent bNAb AIIMS-P01 from a clade C chronically infected pediatric elite neutralizer. The N332-supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibits substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation of bNAbs contributing to the plasma breadth in HIV-1 infected children may help to better understand their development and characteristics, which in turn may guide vaccine design.

Collaboration


Dive into the Muzamil Ashraf Makhdoomi's collaboration.

Top Co-Authors

Avatar

Kalpana Luthra

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Kumar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rakesh Lodha

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sushil K. Kabra

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Lubina Khan

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Heena Aggarwal

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rajesh Kumar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Raiees Andrabi

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ravinder Singh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bimal K. Das

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge