Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where My Hedhammar is active.

Publication


Featured researches published by My Hedhammar.


Molecular & Cellular Proteomics | 2005

A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics

Mathias Uhlén; Erik Björling; Charlotta Agaton; Cristina Al-Khalili Szigyarto; Bahram Amini; Elisabet Andersen; Ann-Catrin Andersson; Pia Angelidou; Anna Asplund; Caroline Asplund; Lisa Berglund; Kristina Bergström; Harry Brumer; Dijana Cerjan; Marica Ekström; Adila El-Obeid; Cecilia Eriksson; Linn Fagerberg; Ronny Falk; Jenny Fall; Mattias Forsberg; Marcus Gry Björklund; Kristoffer Gumbel; Asif Halimi; Inga Hallin; Carl Hamsten; Marianne Hansson; My Hedhammar; Görel Hercules; Caroline Kampf

Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, ∼400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.


Nature | 2010

Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.

Glareh Askarieh; My Hedhammar; Kerstin Nordling; Alejandra Sáenz; Cristina Casals; Anna Rising; Jan Johansson; Stefan D. Knight

Nature’s high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider’s spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 Å resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider’s silk extrusion duct.


Cellular and Molecular Life Sciences | 2011

Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications

Anna Rising; Mona Widhe; Jan Johansson; My Hedhammar

Spider dragline silk is an outstanding material made up of unique proteins—spidroins. Analysis of the amino acid sequences of full-length spidroins reveals a tripartite composition: an N-terminal non-repetitive domain, a highly repetitive central part composed of approximately 100 polyalanine/glycine rich co-segments and a C-terminal non-repetitive domain. Recent molecular data on the terminal domains suggest that these have different functions. The composite nature of spidroins allows for recombinant production of individual and combined regions. Miniaturized spidroins designed by linking the terminal domains with a limited number of repetitive segments recapitulate the properties of native spidroins to a surprisingly large extent, provided that they are produced and isolated in a manner that retains water solubility until fibre formation is triggered. Biocompatibility studies in cell culture or in vivo of native and recombinant spider silk indicate that they are surprisingly well tolerated, suggesting that recombinant spider silk has potential for biomedical applications.


Biochemistry | 2008

Structural Properties of Recombinant Nonrepetitive and Repetitive Parts of Major Ampullate Spidroin 1 from Euprosthenops australis: Implications for Fiber Formation †

My Hedhammar; Anna Rising; Stefan Grip; Alejandra Saenz Martinez; Kerstin Nordling; Cristina Casals; Margareta Stark; Jan Johansson

Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.


Advanced Materials | 2011

Woven Electrochemical Transistors on Silk Fibers

Christian Müller; Mahiar Hamedi; Roger Karlsson; Ronnie Jansson; Rebeca Marcilla; My Hedhammar; Olle Inganäs

Woven electrochemical transistors on silk fibers from the silkworm Bombyx mori are demonstrated. This is achieved with carefully chosen electrolyte chemistry: electrically conducting silk fibers ar ...


Biomaterials | 2010

Recombinant spider silk as matrices for cell culture

Mona Widhe; Helena Bysell; Sara Nystedt; Ingrid Schenning; Martin Malmsten; Jan Johansson; Anna Rising; My Hedhammar

The recombinant miniature spider silk protein, 4RepCT, was used to fabricate film, foam, fiber and mesh matrices of different dimensionality, microstructure and nanotopography. These matrices were evaluated regarding their suitability for cell culturing. Human primary fibroblasts attached to and grew well on all matrix types, also in the absence of serum proteins or other animal-derived additives. The highest cell counts were obtained on matrices combining film and fiber/mesh. The cells showed an elongated shape that followed the structure of the matrices and exhibited prominent actin filaments. Moreover, the fibroblasts produced, secreted and deposited collagen type I onto the matrices. These results, together with findings of the matrices being mechanically robust, hold promise not only for in vitro cell culturing, but also for tissue engineering applications.


Biomaterials | 2013

Recombinant spider silk with cell binding motifs for specific adherence of cells

Mona Widhe; Ulrika Johansson; Carl-Olof Hillerdahl; My Hedhammar

Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types.


Journal of Molecular Biology | 2010

A pH-dependent dimer lock in spider silk protein.

Michael Landreh; Glareh Askarieh; Kerstin Nordling; My Hedhammar; Anna Rising; Cristina Casals; Juan Astorga-Wells; Gunvor Alvelius; Stefan D. Knight; Jan Johansson; Hans Jörnvall; Tomas Bergman

Spider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3. Using amide hydrogen/deuterium exchange combined with mass spectrometry (MS), we detected pH-dependent changes in deuterium incorporation into the core of the NT domain, indicating global structural stabilization at low pH. The stabilizing effects were diminished or abolished at high ionic strength, or when the surface-exposed residues Asp40 and Glu84 had been exchanged with the corresponding amides. Nondenaturing electrospray ionization MS revealed the presence of dimers in the gas phase at pH values below--but not above--6.4, indicating a tight electrostatic association that is dependent on Asp40 and Glu84 at low pH. Results from analytical ultracentrifugation support these findings. Together, the data suggest a mechanism whereby lowering the pH to <6.4 results in structural changes and alteration of charge-mediated interactions between subunits, thereby locking the spidroin NT dimer into a tight entity important for aggregation and silk formation.


Biomacromolecules | 2010

Sterilized Recombinant Spider Silk Fibers of Low Pyrogenicity

My Hedhammar; Hanna Bramfeldt; Teodora Baris; Mona Widhe; Glareh Askarieh; Kerstin Nordling; Sonja von Aulock; Jan Johansson

We have recently shown that it is possible to recombinantly produce a miniature spider silk protein, 4RepCT, that spontaneously self-assembles into mechanically stable macroscopic fibers (Stark, M.; Grip, S.; Rising, A.; Hedhammar, M.; Engstrom, W.; Hjalm, G.; Johansson, J. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 2007, 8 (5), 1695-1701). When produced as a soluble fusion protein (with thioredoxin) in Escherichia coli , the spider silk protein can be subjected to several purification steps without aggregating. Here, combined purification and endotoxin removal is achieved using a simple cell wash procedure, protein affinity purification, and LPS depletion. No toxic chemicals were included in the process and the protein retained its ability to self-assemble into fibers. With this method, fibers with pyrogenicity corresponding to less than 1 EU/mg could be recovered. Moreover, the fibers could be sterilized through autoclaving with retained morphology, structure, and mechanical properties. This implies that this recombinant silk is suitable for usage as biomaterial, which is further supported by data showing that the fibers allow growth of human primary fibroblasts.


Journal of Molecular Biology | 2012

pH-Dependent Dimerization of Spider Silk N-Terminal Domain Requires Relocation of a Wedged Tryptophan Side Chain.

Kristaps Jaudzems; Glareh Askarieh; Michael Landreh; Kerstin Nordling; My Hedhammar; Hans Jörnvall; Anna Rising; Stefan D. Knight; Jan Johansson

Formation of spider silk from its constituent proteins-spidroins-involves changes from soluble helical/coil conformations to insoluble β-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation. The spidroin N-terminal domain (NT) undergoes stable dimerization and structural changes in this pH region, but the underlying mechanisms are incompletely understood. Here, we determine the NMR and crystal structures of Euprosthenops australis NT mutated in the dimer interface (A72R). Also, the NMR structure of wild-type (wt) E. australis NT at pH7.2 and 300 mM sodium chloride was determined. The wt NT and A72R structures are monomers and virtually identical, but they differ from the subunit structure of dimeric wt NT mainly by having a tryptophan (W10) buried between helix 1 and helix 3, while W10 is surface exposed in the dimer. Wedging of the W10 side chain in monomeric NT tilts helix 3 approximately 5-6Å into a position that is incompatible with that of the observed dimer structure. The structural differences between monomeric and dimeric NT domains explain the tryptophan fluorescence patterns of NT at pH7 and pH6 and indicate that the biological function of NT depends on conversion between the two conformations.

Collaboration


Dive into the My Hedhammar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronnie Jansson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mona Widhe

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sophia Hober

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linnea Nilebäck

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kerstin Nordling

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Mathias Uhlén

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Glareh Askarieh

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Torbjörn Gräslund

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge