Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mykola V. Rodnin is active.

Publication


Featured researches published by Mykola V. Rodnin.


Journal of Molecular Biology | 2010

Conformational switching of the diphtheria toxin T domain.

Mykola V. Rodnin; Alexander Kyrychenko; Paul K. Kienker; Onkar Sharma; Yevgen O. Posokhov; R. John Collier; Alan Finkelstein; Alexey S. Ladokhin

The diphtheria toxin T domain translocates the catalytic C domain across the endosomal membrane in response to acidification. To elucidate the role of histidine protonation in modulating pH-dependent membrane action of the T domain, we have used site-directed mutagenesis coupled with spectroscopic and physiological assays. Replacement of H257 with an arginine (but not with a glutamine) resulted in dramatic unfolding of the protein at neutral pH, accompanied by a substantial loss of helical structure and greatly increased exposure of the buried residues W206 and W281. This unfolding and spectral shift could be reversed by the interaction of the H257R mutant with model lipid membranes. Remarkably, this greatly unfolded mutant exhibited wild-type-like activity in channel formation, N-terminus translocation, and cytotoxicity assays. Moreover, membrane permeabilization caused by the H257R mutant occurs already at pH 6, where wild type protein is inactive. We conclude that protonation of H257 acts as a major component of the pH-dependent conformational switch, resulting in destabilization of the folded structure in solution and thereby promoting the initial membrane interactions necessary for translocation.


Biochemistry | 2009

Kinetic Intermediate Reveals Staggered pH-Dependent Transitions along the Membrane Insertion Pathway of the Diphtheria Toxin T-Domain

Alexander Kyrychenko; Yevgen O. Posokhov; Mykola V. Rodnin; Alexey S. Ladokhin

The pH-triggered membrane insertion pathway of the T-domain of diphtheria toxin was studied using site-selective fluorescence labeling with subsequent application of several spectroscopic techniques (e.g., fluorescence correlation spectroscopy, FRET, lifetime quenching, and kinetic fluorescence). FCS measurements indicate that pH-dependent formation of the membrane-competent form depends only slightly on the amount of anionic lipids in the membrane. The subsequent transbilayer insertion, however, is strongly favored by anionic lipids. Kinetic FRET measurements between the donor-labeled T-domain and acceptor-labeled lipid vesicles demonstrate rapid membrane association at all pH values for which binding occurs. In contrast, the transmembrane insertion kinetics is significantly slower and is also both pH- and lipid-dependent. Analysis of kinetic behavior of binding and insertion indicates the presence of several interfacial intermediates on the insertion pathway of the T-domain, from soluble W-state to transmembrane T-state. Intermediate interfacial I-state can be trapped in membranes with low content of anionic lipids (10%). In membranes of greater anionic lipid content, another pH-dependent transition results in the formation of the insertion-competent state and subsequent transmembrane insertion. Comparison of the results of various kinetic and equilibrium experiments suggests that the pH dependences determining membrane association and transbilayer insertion transitions are different but staggered. Anionic lipids not only assist in formation of the insertion-competent form but also lower the kinetic barrier for the final insertion.


Biochemistry | 2008

Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching.

Yevgen O. Posokhov; Mykola V. Rodnin; Lucy Lu; Alexey S. Ladokhin

Experimental determination of the free energy stabilizing the structure of membrane proteins in their native lipid environment is undermined by the lack of appropriate methods and suitable model systems. Annexin B12 (ANX) is a soluble protein which reversibly inserts into lipid membranes under mildly acidic conditions, which makes it a good experimental model for thermodynamic studies of folding and stability of membrane proteins. Here we apply fluorescence correlation spectroscopy for quantitative analysis of ANX partitioning into large unilamellar vesicles containing either 25% or 75% anionic lipids. Membrane binding of ANX results in changes of autocorrelation time and amplitude, both of which are used in quantitative analysis. The thermodynamic scheme describing acid-induced membrane interactions of ANX considers two independent processes: pH-dependent formation of a membrane-competent form near the membrane interface and its insertion into the lipid bilayer. Our novel fluorescence lifetime topology method demonstrates that the insertion proceeds via an interfacial refolded intermediate state, which can be stabilized by anionic lipids. Lipid titration measurements are used to determine the free energy of both transmembrane insertion and interfacial penetration, which are found to be similar, approximately -10-12 kcal/mol. The formation of the membrane-competent form, examined in a lipid saturation experiment, was found to depend on the local proton concentration near the membrane interface, occurring with pK = 4.3 and involving the protonation of two residues. Our results demonstrate that fluorescence correlation spectroscopy is a convenient tool for the quantitative characterization of the energetics of transmembrane insertion and that pH-triggered ANX insertion is a useful model for studying the thermodynamic stability of membrane proteins.


Journal of Molecular Biology | 2013

pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.

Igor V. Kurnikov; Alexander Kyrychenko; Jose C. Flores-Canales; Mykola V. Rodnin; Nikolay Simakov; Mauricio Vargas-Uribe; Yevgen O. Posokhov; Maria Kurnikova; Alexey S. Ladokhin

pH-induced conformational switching is essential for functioning of diphtheria toxin, which undergoes a membrane insertion/translocation transition triggered by endosomal acidification as a key step of cellular entry. In order to establish the sequence of molecular rearrangements and side-chain protonation accompanying the formation of the membrane-competent state of the toxins translocation (T) domain, we have developed and applied an integrated approach that combines multiple techniques of computational chemistry [e.g., long-microsecond-range, all-atom molecular dynamics (MD) simulations; continuum electrostatics calculations; and thermodynamic integration (TI)] with several experimental techniques of fluorescence spectroscopy. TI calculations indicate that protonation of H257 causes the greatest destabilization of the native structure (6.9 kcal/mol), which is consistent with our early mutagenesis results. Extensive equilibrium MD simulations with a combined length of over 8 μs demonstrate that histidine protonation, while not accompanied by the loss of structural compactness of the T-domain, nevertheless results in substantial molecular rearrangements characterized by the partial loss of secondary structure due to unfolding of helices TH1 and TH2 and the loss of close contact between the C- and N-terminal segments. The structural changes accompanying the formation of the membrane-competent state ensure an easier exposure of the internal hydrophobic hairpin formed by helices TH8 and TH9, in preparation for its subsequent transmembrane insertion.


Biophysical Journal | 2008

FCS Study of the Thermodynamics of Membrane Protein Insertion into the Lipid Bilayer Chaperoned by Fluorinated Surfactants

Yevgen O. Posokhov; Mykola V. Rodnin; Somes K. Das; Bernard Pucci; Alexey S. Ladokhin

Experimental determination of the free energy (DeltaG) stabilizing the structure of membrane proteins (MPs) in their native environment has been hampered by the aggregation and precipitation of MPs outside the lipid bilayer. We recently demonstrated that the latter process can be prevented by the use of fluorinated surfactants, FTACs, that act as chaperones for MP insertion without partitioning in the membrane themselves. Here we combine the advantages of the chaperone-like ability of FTACs with the sensitivity of fluorescence correlation spectroscopy measurements to determine DeltaG of bilayer insertion of model MPs. First, we calibrate our approach by examining the effects of chaperoned insertion on DeltaG of transmembrane insertion of Annexin B12. We find that a shorter-chained surfactant, FTAC-C6, for which the working concentration range of 0.05-0.2 mM falls below CMC = 0.33 mM, has a mild effect on an apparent DeltaG. In contrast, additions of a longer-chained FTAC-C8 (CMC = 0.03 mM) result in a steep and nonlinear concentration dependence of DeltaG. We then apply the same methodology to the pH-triggered insertion of diphtheria toxin T-domain, which is known to be affected by nonproductive aggregation in solution. We find that the correction of the DeltaG value needed to compensate for unchaperoned insertion of the T-domain exceeds 3 kcal/mole. A relatively shallow and linear dependence of the DeltaG for Annexin B12 and T-domain insertion on FTAC-C6 concentration is encouraging for future applications of this surfactant in thermodynamic studies of the stability of other MPs.


Biochemistry | 2014

Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

Jing Li; Mykola V. Rodnin; Alexey S. Ladokhin; Michael L. Gross

The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.


Biochemistry | 2013

Crucial Role of H322 in the Folding of Diphtheria Toxin T-Domain into the Open-Channel State

Mauricio Vargas-Uribe; Mykola V. Rodnin; Paul K. Kienker; Alan Finkelstein; Alexey S. Ladokhin

The translocation (T) domain plays a key role in the entry of diphtheria toxin into the cell. Upon endosomal acidification, the T-domain undergoes a series of conformational changes that lead to its membrane insertion and formation of a channel. Recently, we have reported that the triple replacement of C-terminal histidines H322, H323, and H372 with glutamines prevents the formation of open channels in planar lipid bilayers. Here, we report that this effect is primarily due to the mutation of H322. We further examine the relationship between the loss of functionality and membrane folding in a series of mutants with C-terminal histidine substitutions using spectroscopic assays. The membrane insertion pathway for the mutants differs from that of the wild type as revealed by the membrane-induced red shift of tryptophan fluorescence at pH 6.0-6.5. T-Domain mutants with replacements at H323 and H372, but not at H322, regain a wild-type-like spectroscopic signature upon further acidification. Circular dichroism measurements confirm that affected mutants misfold during insertion into vesicles. Conductance measurements reveal that substituting H322 dramatically reduces the numbers of properly folded channels in a planar bilayer, but the properties of the active channels appear to be unaltered. We propose that H322 plays an important role in the formation of open channels and is involved in guiding the proper insertion of the N-terminal region of the T-domain into the membrane.


Biochemistry | 2013

Comparison of Membrane Insertion Pathways of the Apoptotic Regulator Bcl-xL and the Diphtheria Toxin Translocation Domain

Mauricio Vargas-Uribe; Mykola V. Rodnin; Alexey S. Ladokhin

The diphtheria toxin translocation domain (T-domain) and the apoptotic repressor Bcl-xL are membrane proteins that adopt their final topology by switching folds from a water-soluble to a membrane-inserted state. While the exact molecular mechanisms of this transition are not clearly understood in either case, the similarity in the structures of soluble states of the T-domain and Bcl-xL led to the suggestion that their membrane insertion pathways will be similar, as well. Previously, we have applied an array of spectroscopic methods to characterize the pH-triggered refolding and membrane insertion of the diphtheria toxin T-domain. Here, we use the same set of methods to describe the membrane insertion pathway of Bcl-xL, which allows us to make a direct comparison between both systems with respect to the thermodynamic stability in solution, pH-dependent membrane association, and transmembrane insertion. Thermal denaturation measured by circular dichroism indicates that, unlike the T-domain, Bcl-xL does not undergo a pH-dependent destabilization of the structure. Förster resonance energy transfer measurements demonstrate that Bcl-xL undergoes reversible membrane association modulated by the presence of anionic lipids, suggesting that formation of the membrane-competent form occurs close to the membrane interface. Membrane insertion of the main hydrophobic helical hairpin of Bcl-xL, α5-α6, was studied by site-selective attachment of environment-sensitive dye NBD. In contrast to the insertion of the corresponding TH8-TH9 hairpin into the T-domain, insertion of α5-α6 was found not to depend strongly on the presence of anionic lipids. Taken together, our results indicate that while Bcl-xL and the T-domain share structural similarities, their modes of conformational switching and membrane insertion pathways are distinctly different.


Journal of Molecular Biology | 2012

Thermodynamic measurements of bilayer insertion of a single transmembrane helix chaperoned by fluorinated surfactants.

Alexander Kyrychenko; Mykola V. Rodnin; Yevgen O. Posokhov; Andrea Holt; Bernard Pucci; J. Antoinette Killian; Alexey S. Ladokhin

Accurate determination of the free energy of transfer of a helical segment from an aqueous into a transmembrane (TM) conformation is essential for understanding and predicting the folding and stability of membrane proteins. Until recently, direct thermodynamically sound measurements of free energy of insertion of hydrophobic TM peptides were impossible due to peptide aggregation outside the lipid bilayer. Here, we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation but, unlike detergents, do not themselves interact with the bilayer. We have applied the fluorescence correlation spectroscopy methodology to study surfactant-chaperoned insertion into preformed POPC (palmitoyloleoylphosphatidylcholine) vesicles of the two well-studied dye-labeled TM peptides of different lengths: WALP23 and WALP27. Extrapolation of the apparent free-energy values measured in the presence of surfactants to a zero surfactant concentration yielded free-energy values of -9.0±0.1 and -10.0±0.1 kcal/mol for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed helical structure of peptides in lipid bilayer, in the presence of surfactants, and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements, we conclude that the partitioning of a four-residue L-A-L-A segment in the context of a continuous helical conformation from an aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal/mol. Our measurements, combined with the predictions of two independent experimental hydrophobicity scales, indicate that the per-residue cost of transfer of the helical backbone from water to the hydrocarbon core of the lipid bilayer is unfavorable and is equal to +2.13±0.17 kcal/mol.


Toxins | 2015

Role of Acidic Residues in Helices TH8-TH9 in Membrane Interactions of the Diphtheria Toxin T Domain

Chiranjib Ghatak; Mykola V. Rodnin; Mauricio Vargas-Uribe; Andrew J. McCluskey; Jose C. Flores-Canales; Maria Kurnikova; Alexey S. Ladokhin

The pH-triggered membrane insertion of the diphtheria toxin translocation domain (T domain) results in transferring the catalytic domain into the cytosol, which is relevant to potential biomedical applications as a cargo-delivery system. Protonation of residues is suggested to play a key role in the process, and residues E349, D352 and E362 are of particular interest because of their location within the membrane insertion unit TH8–TH9. We have used various spectroscopic, computational and functional assays to characterize the properties of the T domain carrying the double mutation E349Q/D352N or the single mutation E362Q. Vesicle leakage measurements indicate that both mutants interact with the membrane under less acidic conditions than the wild-type. Thermal unfolding and fluorescence measurements, complemented with molecular dynamics simulations, suggest that the mutant E362Q is more susceptible to acid destabilization because of disruption of native intramolecular contacts. Fluorescence experiments show that removal of the charge in E362Q, and not in E349Q/D352N, is important for insertion of TH8–TH9. Both mutants adopt a final functional state upon further acidification. We conclude that these acidic residues are involved in the pH-dependent action of the T domain, and their replacements can be used for fine tuning the pH range of membrane interactions.

Collaboration


Dive into the Mykola V. Rodnin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiranjib Ghatak

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Finkelstein

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul K. Kienker

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge