Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mylène A. Carrascal is active.

Publication


Featured researches published by Mylène A. Carrascal.


Molecular Oncology | 2013

Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours

José Alexandre Ferreira; Paula A. Videira; Luís Lima; Sofia S Pereira; Mariana Silva; Mylène A. Carrascal; Paulo F. Severino; Elisabete Fernandes; Andreia Almeida; Céu Costa; Rui Vitorino; Teresina Amaro; Maria José Oliveira; Celso A. Reis; Fabio Dall'Olio; Francisco Amado; Lúcio Lara Santos

Little is known on the expression of the tumour‐associated carbohydrate antigen sialyl‐Tn (STn), in bladder cancer. We report here that 75% of the high‐grade bladder tumours, presenting elevated proliferation rates and high risk of recurrence/progression expressed STn. However, it was mainly found in non‐proliferative areas of the tumour, namely in cells invading the basal and muscle layers. STn was also found in tumour‐adjacent mucosa, which suggests its dependence on a field effect of the tumour. Furthermore, it was not expressed by the normal urothelium, demonstrating the cancer‐specific nature of this antigen. STn expression correlated with that of sialyltransferase ST6GalNAc.I, its major biosynthetic enzyme. The stable expression of ST6GalNAc.I in the bladder cancer cell line MCR induced STn expression and a concomitant increase of cell motility and invasive capability. Altogether, these results indicate for the first time a link between STn expression and malignancy in bladder cancer. Hence, therapies targeting STn may constitute new treatment approaches for these tumours.


Molecular Oncology | 2014

Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells

Mylène A. Carrascal; Paulo F. Severino; M. Guadalupe Cabral; Mariana Silva; José Alexandre Ferreira; Fernando Calais; Hermínia Quinto; Cláudia Pen; D. Ligeiro; Lúcio Lara Santos; Fabio Dall'Olio; Paula A. Videira

Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype‐associated glycan, sialyl‐Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1‐inducing cytokines IL‐12 and TNF‐α. In vitro, human DCs co‐incubated with STn+ bladder cancer cells, had an immature phenotype (MHC‐IIlow, CD80low and CD86low) and were unresponsive to further maturation stimuli. When contacting with STn+ cancer cells, DCs expressed significantly less IL‐12 and TNF‐α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn+ cancer cells were not activated and showed a FoxP3high IFN‐γlow phenotype. Blockade of STn antigens and of STn+ glycoprotein, CD44 and MUC1, in STn+ cancer cells was able to lower the induction of tolerance and DCs become more mature.


Immunology | 2013

The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency.

M. Guadalupe Cabral; Zélia Silva; D. Ligeiro; Elsa Seixas; Hélio J. Crespo; Mylène A. Carrascal; Mariana Silva; Ana R. Piteira; Paulo Paixão; Joseph T.Y. Lau; Paula A. Videira

Dendritic cells (DCs) play an essential role in immunity against bacteria by phagocytosis and by eliciting adaptive immune responses. Previously, we demonstrated that human monocyte‐derived DCs (MDDCs) express a high content of cell surface α2,6‐sialylated glycans. However, the relative role of these sialylated structures in phagocytosis of bacteria has not been reported. Here, we show that treatment with a sialidase significantly improved the capacity of both immature and mature MDDCs to phagocytose Escherichia coli. Desialylated MDDCs had a significantly more mature phenotype, with higher expression of MHC molecules and interleukin (IL)‐12, tumour necrosis factor‐α, IL‐6 and IL‐10 cytokines, and nuclear factor‐κB activation. T lymphocytes primed by desialylated MDDCs expressed more interferon‐γ when compared with priming by sialylated MDDCs. Improved phagocytosis required E. coli sialic acids, indicating a mechanism of host–pathogen interaction dependent on sialic acid moieties. The DCs harvested from mice deficient in the ST6Gal.1 sialyltransferase showed improved phagocytosis capacity, demonstrating that the observed sialidase effect was a result of the removal of α2,6‐sialic acid. The phagocytosis of different pathogenic E. coli isolates was also enhanced by sialidase, which suggests that modifications on MDDC sialic acids may be considered in the development of MDDC‐based antibacterial therapies. Physiologically, our findings shed new light on mechanisms that modulate the function of both immature and mature MDDCs, in the context of host–bacteria interaction. Hence, with particular relevance to DC‐based therapies, the engineering of α2,6‐sialic acid cell surface is a novel possibility to fine tune DC phagocytosis and immunological potency.


Ancient Biomolecules | 2015

Challenges in Antibody Development against Tn and Sialyl-Tn Antigens

Liliana R. Loureiro; Mylène A. Carrascal; Ana Barbas; José S. Ramalho; Carlos Novo; Philippe Delannoy; Paula A. Videira

The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.


Urologia Internationalis | 2011

Effects of bevacizumab on autocrine VEGF stimulation in bladder cancer cell lines.

Paula A. Videira; A. Rita Piteira; M. Guadalupe Cabral; Catarina Martins; Manuela Correia; Paulo F. Severino; Helena Gouveia; Mylène A. Carrascal; Joana Almeida; Hélder Trindade; Lúcio Lara Santos

Introduction: A functional vascular endothelial growth factor A (VEGF-A) autocrine loop is crucial for bladder cancer cell survival. We reasoned that treatment with the anti-VEGF antibody bevacizumab may result either in cell growth prevention or in the cell adaptation to compensate VEGF deprivation. Methods: The cytotoxicity of different levels of bevacizumab and its effect on the gene expression was analyzed in human bladder cancer cell lines. Results: Inhibition of bladder cancer cell proliferation was observed at >2.5 mg/ml of bevacizumab. Non-muscle-invasive bladder cancer cells expressed high concentrations of VEGF-A, and were less susceptible to bevacizumab inhibition. At 0.5 mg/ml (FDA approved concentration) of bevacizumab, cells increase their expression of VEGF-A, VEGF-A receptors and related growth factors. Conclusions: Bevacizumab cytotoxicity is only observed at high concentration, and it is inversely correlated with the basal VEGF-A expression of the bladder cancer cells. This is the first report showing that, at clinical bevacizumab concentrations, cancer cells compensate the VEGF-A blockade, by improving the expression of VEGF-A and related genes, highlighting the need to follow the patient’s adaptation response to bevacizumab treatment.


Molecular Oncology | 2018

Inhibition of fucosylation in human invasive ductal carcinoma reduces E‐selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation

Mylène A. Carrascal; Mariana Silva; José S. Ramalho; Cláudia Pen; Manuela Martins; Carlota Pascoal; Constança Amaral; Isabel Serrano; Maria José Oliveira; Robert Sackstein; Paula A. Videira

Breast cancer tissue overexpresses fucosylated glycans, such as sialyl‐Lewis X/A (sLeX/A), and α‐1,3/4‐fucosyltransferases (FUTs) in relation to increased disease progression and metastasis. These glycans in tumor circulating cells mediate binding to vascular E‐selectin, initiating tumor extravasation. However, their role in breast carcinogenesis is still unknown. Here, we aimed to define the contribution of the fucosylated structures, including sLeX/A, to cell adhesion, cell signaling, and cell proliferation in invasive ductal carcinomas (IDC), the most frequent type of breast cancer. We first analyzed expression of E‐selectin ligands in IDC tissue and established primary cell cultures from the tissue. We observed strong reactivity with E‐selectin and anti‐sLeX/A antibodies in both IDC tissue and cell lines, and expression of α‐1,3/4 FUTs FUT4, FUT5, FUT6, FUT10, and FUT11. To further assess the role of fucosylation in IDC biology, we immortalized a primary IDC cell line with human telomerase reverse transcriptase to create the ‘CF1_T cell line’. Treatment with 2‐fluorofucose (2‐FF), a fucosylation inhibitor, completely abrogated its sLeX/A expression and dramatically reduced adherence of CF1_T cells to E‐selectin under hemodynamic flow conditions. In addition, 2‐FF‐treated CF1_T cells showed a reduced migratory ability, as well as decreased cell proliferation rate. Notably, 2‐FF treatment lowered the growth factor expression of CF1_T cells, prominently for FGF2, vascular endothelial growth factor, and transforming growth factor beta, and negatively affected activation of signal‐regulating protein kinases 1 and 2 and p38 mitogen‐activated protein kinase signaling pathways. These data indicate that fucosylation licenses several malignant features of IDC, such as cell adhesion, migration, proliferation, and growth factor expression, contributing to tumor progression.


BMC Cancer | 2018

Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1

Paulo F. Severino; Mariana Silva; Mylène A. Carrascal; Nadia Malagolini; Mariella Chiricolo; Giulia Venturi; Roberto Barbaro Forleo; Annalisa Astolfi; Mariangela Catera; Paula A. Videira; Fabio Dall’Olio

BackgroundTreatment with Bacillus Calmette-Guérin (BCG) is the gold standard adjuvant immunotherapy of non-muscle invasive bladder cancer (NMIBC), although it fails in one third of the patients. NMIBC expresses two tumor-associated O-linked carbohydrates: the disaccharide (Galβ1,3GalNAc) Thomsen-Friedenreich (T) antigen, and its sialylated counterpart (Siaα2,3Galβ1,3GalNAc) sialyl-T (sT), synthesized by sialyltransferase ST3GAL1, whose roles in BCG response are unknown.MethodsThe human bladder cancer (BC) cell line HT1376 strongly expressing the T antigen, was retrovirally transduced with the ST3GAL1 cDNA or with an empty vector, yielding the cell lines HT1376sT and HT1376T, that express, respectively, either the sT or the T antigens. Cells were in vitro challenged with BCG. Whole gene expression was studied by microarray technology, cytokine secretion was measured by multiplex immune-beads assay. Human macrophages derived from blood monocytes were challenged with the secretome of BCG-challenged BC cells.ResultsThe secretome from BCG-challenged HT1376sT cells induced a stronger macrophage secretion of IL-6, IL-1β, TNFα and IL-10 than that of HT1376T cells. Transcriptomic analysis revealed that ST3GAL1 overexpression and T/sT replacement modulated hundreds of genes. Several genes preserving genomic stability were down-regulated in HT1376sT cells which, as a consequence, displayed increased sensitivity to oxidative damage. After BCG challenge, the transcriptome of HT1376sT cells showed higher susceptibility to BCG modulation than that of HT1376T cells.ConclusionsHigh ST3GAL1 expression and T/sT replacement in BCG challenged-BC cancer cells induce a stronger macrophage response and alter the gene expression towards genomic instability, indicating a potential impact on BC biology and patient’s response to BCG.


Oncotarget | 2017

Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Guérin (BCG) and to oxidative damage

Paulo F. Severino; Mariana Silva; Mylène A. Carrascal; Nadia Malagolini; Mariella Chiricolo; Giulia Venturi; Annalisa Astolfi; Mariangela Catera; Paula A. Videira; Fabio Dall'Olio

The sialyl-Tn (sTn) antigen is an O-linked carbohydrate chain aberrantly expressed in bladder cancer (BC), whose biosynthesis is mainly controlled by the sialyltransferase ST6GALNAC1. Treatment with Bacillus Calmette-Guérin (BCG) is the most effective adjuvant immunotherapy for superficial BC but one third of the patients fail to respond. A poorly understood correlation between the expression of sTn and BC patients response to BCG was previously observed. By analyzing tumor tissues, we showed that patients with high ST6GALNAC1 and IL-6 mRNA expression were BCG responders. To investigate the role of sTn in BC cell biology and BCG response, we established the cell lines MCRsTn and MCRNc by retroviral transduction of the BC cell line MCR with the ST6GALNAC1 cDNA or with an empty vector, respectively. Compared with MCRNc, BCG-stimulated MCRsTn secreted higher levels of IL-6 and IL-8 and their secretome induced a stronger IL-6, IL-1β, and TNFα secretion by macrophages, suggesting the induction of a stronger inflammatory response. Transcriptomic analysis of MCRNc and MCRsTn revealed that ST6GALNAC1/sTn expression modulates hundreds of genes towards a putative more malignant phenotype and down-regulates several genes maintaining genomic stability. Consistently, MCRsTn cells displayed higher H2O2 sensitivity. In MCRsTn,, BCG challenge induced an increased expression of several regulatory non coding RNA genes. These results indicate that the expression of ST6GALNAC1/sTn improves the response to BCG therapy by inducing a stronger macrophage response and alters gene expression towards malignancy and genomic instability, increasing the sensitivity of BC cells to the oxidizing agents released by BCG.The sialyl-Tn (sTn) antigen is an O-linked carbohydrate chain aberrantly expressed in bladder cancer (BC), whose biosynthesis is mainly controlled by the sialyltransferase ST6GALNAC1. Treatment with Bacillus Calmette-Guérin (BCG) is the most effective adjuvant immunotherapy for superficial BC but one third of the patients fail to respond. A poorly understood correlation between the expression of sTn and BC patients response to BCG was previously observed. By analyzing tumor tissues, we showed that patients with high ST6GALNAC1 and IL-6 mRNA expression were BCG responders. To investigate the role of sTn in BC cell biology and BCG response, we established the cell lines MCRsTn and MCRNc by retroviral transduction of the BC cell line MCR with the ST6GALNAC1 cDNA or with an empty vector, respectively. Compared with MCRNc, BCG-stimulated MCRsTn secreted higher levels of IL-6 and IL-8 and their secretome induced a stronger IL-6, IL-1β, and TNFα secretion by macrophages, suggesting the induction of a stronger inflammatory response. Transcriptomic analysis of MCRNc and MCRsTn revealed that ST6GALNAC1/sTn expression modulates hundreds of genes towards a putative more malignant phenotype and down-regulates several genes maintaining genomic stability. Consistently, MCRsTn cells displayed higher H2O2 sensitivity. In MCRsTn,, BCG challenge induced an increased expression of several regulatory non coding RNA genes. These results indicate that the expression of ST6GALNAC1/sTn improves the response to BCG therapy by inducing a stronger macrophage response and alters gene expression towards malignancy and genomic instability, increasing the sensitivity of BC cells to the oxidizing agents released by BCG.


Talanta | 2018

Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer

J.E. Araújo; Hugo López-Fernández; Mário S. Diniz; Pedro Baltazar; Luís Campos Pinheiro; Fernando M. Calais da Silva; Mylène A. Carrascal; Paula A. Videira; Hugo M. Santos; J.L. Capelo

This study aimed to assess the benefits of dithiothreitol (DTT)-based sample treatment for protein equalization to assess potential biomarkers for bladder cancer. The proteome of plasma samples of patients with bladder carcinoma, patients with lower urinary tract symptoms (LUTS) and healthy volunteers, was equalized with dithiothreitol (DTT) and compared. The equalized proteomes were interrogated using two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry. Six proteins, namely serum albumin, gelsolin, fibrinogen gamma chain, Ig alpha-1 chain C region, Ig alpha-2 chain C region and haptoglobin, were found dysregulated in at least 70% of bladder cancer patients when compared with a pool of healthy individuals. One protein, serum albumin, was found overexpressed in 70% of the patients when the equalized proteome of the healthy pool was compared with the equalized proteome of the LUTS patients. The pathways modified by the proteins differentially expressed were analyzed using Cytoscape. The method here presented is fast, cheap, of easy application and it matches the analytical minimalism rules as outlined by Halls. Orthogonal validation was done using western-blot. Overall, DTT-based protein equalization is a promising methodology in bladder cancer research.


Biochimica et Biophysica Acta | 2018

A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer

Mylène A. Carrascal; M. Silva; José Alexandre Ferreira; R. Azevedo; Dylan Ferreira; Alexandra Silva; D. Ligeiro; Lurdes Santos; Robert Sackstein; Paula A. Videira

BACKGROUND The glycan moieties sialyl-Lewis-X and/or -A (sLeX/A) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. METHODS We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. RESULTS We observed that the CF1_T cell line expressed sLeX, but not sLeA and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLeX-CD44 and sLeX-CD13 was confirmed in clinical breast cancer tissue samples. CONCLUSIONS Both CD44 and CD13 glycoforms display sLeX in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. GENERAL SIGNIFICANCE While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target.

Collaboration


Dive into the Mylène A. Carrascal's collaboration.

Top Co-Authors

Avatar

Paula A. Videira

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Mariana Silva

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Paulo F. Severino

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Ligeiro

Hospital Pulido Valente

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lúcio Lara Santos

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge