Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mylene Perreault is active.

Publication


Featured researches published by Mylene Perreault.


Journal of Biological Chemistry | 2011

Targeting Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases

Jingsong Cao; Yingjiang Zhou; Haibing Peng; Xinyi Huang; Shannon Stahler; Vipin Suri; Ariful Qadri; Tiffany Gareski; Seung Hahm; Mylene Perreault; John McKew; Mengxiao Shi; Xin Xu; James Tobin; Ruth E. Gimeno

Background: DGAT1 is a triglyceride biosynthetic enzyme with a possible role in metabolic disorders. Results: T-863, a potent DGAT1 inhibitor acting on the acyl-CoA binding site of DGAT1, decreased body weight, improved insulin sensitivity, and alleviated hepatic steatosis in diet-induced obese mice. Conclusion: These data support further exploration of DGAT1 inhibitors for metabolic disorders. Significance: Our study reveals mechanisms of action for DGAT1 inhibitors. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.


Journal of Medicinal Chemistry | 2009

Efficacious 11β-Hydroxysteroid Dehydrogenase Type I Inhibitors in the Diet-Induced Obesity Mouse Model

Zhao-Kui Wan; Eva Chenail; Jason Shaoyun Xiang; Huan-Qiu Li; Manus Ipek; Joel Bard; Kristine Svenson; Tarek S. Mansour; Xin Xu; Xianbin Tian; Vipin Suri; Seung Hahm; Yuzhe Xing; Christian E. Johnson; Xiangping Li; Ariful Qadri; Darrell Panza; Mylene Perreault; James Tobin; Eddine Saiah

Cortisol and the glucocorticoid receptor signaling pathway have been implicated in the development of diabetes and obesity. The reduction of cortisone to cortisol is catalyzed by 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1). 2,4-Disubsituted benzenesulfonamides were identified as potent inhibitors of both the human and mouse enzymes. The lead compounds displayed good pharmacokinetics and ex vivo inhibition of the target in mice. Cocrystal structures of compounds 1 and 20 bound to human 11beta-HSD1 were obtained. Compound 20 was found to achieve high concentrations in target tissues, resulting in 95% inhibition in the ex vivo assay when dosed with a food mix (0.5 mg of drug per g of food) after 4 days. Compound 20 was efficacious in a mouse diet-induced obesity model and significantly reduced fed glucose and fasted insulin levels. Our findings suggest that 11beta-HSD1 inhibition may be a valid target for the treatment of diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2014

Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity

Jingsong Cao; Sylvie Perez; Bryan Goodwin; Qingcong Lin; Haibing Peng; Ariful Qadri; Yingjiang Zhou; Ronald W. Clark; Mylene Perreault; James F. Tobin; Ruth E. Gimeno

Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient (Gpat3(-/-)) mice. Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3 deletion had no impact on total GPAT activity but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3 deficiency lowered fed, but not fasted, glucose levels and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.


PLOS ONE | 2013

Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

Mylene Perreault; Guo Feng; Sarah Will; Tiffany Gareski; David Kubasiak; Kimberly Marquette; Yulia Vugmeyster; Thaddeus J. Unger; Ariful Qadri; Seung Hahm; Ying Sun; Cynthia M. Rohde; Raphael Zwijnenberg; Janet E. Paulsen; Ruth E. Gimeno

Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.


ACS Medicinal Chemistry Letters | 2013

Discovery of HSD-621 as a Potential Agent for the Treatment of Type 2 Diabetes.

Zhao-Kui Wan; Eva Chenail; Huan-Qiu Li; Manus Ipek; Jason Shaoyun Xiang; Vipin Suri; Seung Hahm; Joel Bard; Kristine Svenson; Xin Xu; Xianbin Tian; Mengmeng Wang; Xiangping Li; Christian E. Johnson; Ariful Qadri; Darrell Panza; Mylene Perreault; Tarek S. Mansour; James Tobin; Eddine Saiah

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoid cortisone to its active form, cortisol. The glucocorticoid receptor (GR) signaling pathway has been linked to the pathophysiology of diabetes and metabolic syndrome. Herein, the structure-activity relationship of a series of piperazine sulfonamide-based 11β-HSD1 inhibitors is described. (R)-3,3,3-Trifluoro-2-(5-(((R)-4-(4-fluoro-2-(trifluoromethyl)phenyl)-2-methylpiperazin-1-yl)sulfonyl)thiophen-2-yl)-2-hydroxypropanamide 18a (HSD-621) was identified as a potent and selective 11β-HSD1 inhibitor and was ultimately selected as a clinical development candidate. HSD-621 has an attractive overall pharmaceutical profile and demonstrates good oral bioavailability in mouse, rat, and dog. When orally dosed in C57/BL6 diet-induced obesity (DIO) mice, HSD-621 was efficacious and showed a significant reduction in both fed and fasting glucose and insulin levels. Furthermore, HSD-621 was well tolerated in drug safety assessment studies.


Endocrinology | 2012

Loss of Coiled-Coil Domain Containing 80 Negatively Modulates Glucose Homeostasis in Diet-Induced Obese Mice

Frédéric Tremblay; Christine Huard; Jessie Dow; Tiffany Gareski; Sarah Will; Ann-Marie T. Richard; Jameel Syed; Steven Bailey; Karrie A. Brenneman; Robert V. Martinez; Mylene Perreault; Qingcong Lin; Ruth E. Gimeno

Coiled-coil domain containing 80 (Ccdc80) is a secreted protein highly enriched in mouse and human white adipose tissue (WAT) that plays an important role during adipocyte differentiation in vitro. To investigate the physiological function of Ccdc80 in energy and glucose homeostasis, we generated mice in which the gene encoding Ccdc80 was disrupted. Mice lacking Ccdc80 showed increased sensitivity to diet-induced hyperglycemia and glucose intolerance while displaying reduced glucose-stimulated insulin secretion in vivo. Gene expression analysis by microarray revealed that only 10 transcripts were simultaneously altered in pancreas, skeletal muscle, and WAT from Ccdc80(-/-) mice, including some components of the circadian clock. Expression of the core clock member Arntl/Bmal1 was reduced whereas that of the oscillating transcription factors Dbp and Tef was increased in all tissues examined. Furthermore, knockdown of Ccdc80 in 3T3-L1 cells led to an increase of Dbp mRNA levels during adipocyte differentiation, suggesting that Ccdc80 might be involved in the regulation of this gene in a cell-autonomous manner. Importantly, transcriptional alterations in Ccdc80(-/-) mice were associated with changes in feeding behavior, increased caloric intake, decreased energy expenditure, and obesity. Taken together, our results suggest that Ccdc80 is a novel modulator of glucose and energy homeostasis during diet-induced obesity.


mAbs | 2013

Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B: Applying mechanistic modeling to enable preclinical to clinical translation and guide clinical trial design

Yulia Vugmeyster; Cynthia M. Rohde; Mylene Perreault; Ruth E. Gimeno; Pratap Singh

TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h−1). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level < 10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action.


Ppar Research | 2008

PPARdelta Agonism for the Treatment of Obesity and Associated Disorders: Challenges and Opportunities.

Mylene Perreault; David V. Erbe; James Tobin

The prevalence of obesity in the USA and worldwide has reached epidemic proportions during the last two decades. Drugs currently available for the treatment of obesity provide no more than 5% placebo-adjusted weight loss and are associated with undesirable side effects. Peroxisome proliferator-activated receptor (PPAR) modulators offer potential benefits for the treatment of obesity and its associated complications but their development has been complicated by biological, technical, and regulatory challenges. Despite significant challenges, PPAR modulators are attractive targets for the treatment of obesity and could offer a viable alternative to the millions of patients who fail to lose weight following rigorous dieting and exercise protocols. In addition, PPAR modulators have the potential-added benefit of ameliorating the associated comorbidities.


PLOS ONE | 2018

FGF21 increases water intake, urine output and blood pressure in rats

Tod Turner; Xian Chen; Matthew Zahner; Alan Opsahl; George J. DeMarco; Magalie Boucher; Bryan Goodwin; Mylene Perreault

Fibroblast growth factor 21 (FGF21) is a hormone secreted by the liver in response to metabolic stress. In addition to its well-characterized effects on energy homeostasis, FGF21 has been shown to increase water intake in animals. In this study, we sought to further explore the effects of FGF21 on fluid homeostasis in rats. A single dose of a long-acting FGF21 analog, PF-05231023, significantly increased water consumption, which was accompanied by an elevation in urine output that appeared prior to a significant change in water intake. We observed that FGF21 rapidly and significantly increased heart rate and blood pressure in telemeter-implanted rats, before changes in urine output and water intake were observed. Our data suggest that sympathetic activation may contribute to the pathogenesis by which FGF21 increases blood pressure as the baroreceptor unloading induced reflex tachycardia was significantly elevated in FGF21-treated animals. However, FGF21 was still capable of causing hypertension in animals in which approximately 40% of the sympathetic post-ganglionic neurons were ablated. Our data suggest that FGF21-induced water intake is in fact secondary to diuresis, which we propose to be a compensatory mechanism engaged to alleviate the acute hypertension caused by FGF21.


Vascular Pharmacology | 2006

Molecular activation of PPARγ by angiotensin II type 1-receptor antagonists

David V. Erbe; Katherine Gartrell; Yan-Ling Zhang; Vipin Suri; Steven J. Kirincich; Sarah Will; Mylene Perreault; Suyue Wang; James Tobin

Collaboration


Dive into the Mylene Perreault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth E. Gimeno

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge