Mylène Toubiana
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mylène Toubiana.
Developmental and Comparative Immunology | 2013
Mylène Toubiana; Marco Gerdol; Umberto Rosani; Alberto Pallavicini; Paola Venier; Philippe Roch
TLR- and MyD88-related sequences have been previously investigated in Mytibase and then in new transcript reads obtained by Illumina technology from the mussel, Mytilus galloprovincialis. Based on full cds and domain organizations of virtual translations, we identified 23 Toll-like receptors (TLRs) and 3 MyD88 adaptors. MgTLRs can be arranged in 4 clusters according to extra-cellular LRR domain content. MgTLR-b, -i and -k were the only ones containing a multiple cysteine cluster (mccTLR), a domain composition also found in Drosophila Toll-1 and 18-wheeler. The 3 MyD88 we identified in M. galloprovincialis were also retrieved from Mytilus edulis, as well as MgTLR-b and -i. All MgTLRs were constitutively expressed in digestive gland whereas only 4 of them were also present in hemocytes. On the opposite, the 3 MgMyD88s were constitutively expressed in all the tissues. In vivo challenge of M. galloprovincialis with bacteria caused the up regulation of only MgTLR-i, but of all the 3 MgMyD88s. Highest response was induced by Gram-negative Vibrio anguillarum at 9h p.i. Injection of filamentous fungus, Fusarium oxysporum, resulted in up regulation of MgTLR-i and MgMyD88-c at 9h p.i. Such similar pattern of responses suggested MgMyD88-c represents the intra cytoplasm partner of MgTLR-i. Their interaction constituted the first cellular event revealing the existence of a Toll-signaling pathway in Lophotrochozoa.
Fish & Shellfish Immunology | 2008
Hui Li; Maria-Giovanna Parisi; Mylène Toubiana; Matteo Cammarata; Philippe Roch
The aim of the present study was to evaluate the expression of the Mytilus galloprovincialis lysozyme gene in different in vivo stress situations, including injection of bacteria Vibrio splendidus LGP32, Vibrio anguillarum or Micrococcus lysodeikticus, as well as heat shock at 30 degrees C and cold stress at 5 degrees C. Injection of V. splendidus LGP32 resulted in: (i) a general down-regulation of lysozyme gene expression, as quantified by Q-PCR; (ii) reduction in the number of circulating hemocytes; (iii) decrease in the percentage of circulating hemocytes expressing lysozyme mRNA which was now restricted to only small cells, as observed by ISH; and (iv) accumulation of hemocytes expressing lysozyme in the muscle sinus where injection took place. Injection of V. anguillarum or M. lysodeikticus induced significant up-regulation of lysozyme gene expression, but only 2-3days post-injection, with no change in the total hemocyte counts but an increased percentage of hemocytes expressing lysozyme mRNA. Neither the control injection of PBS-NaCl nor temperature stress modified the lysozyme expression pattern. Consequently, the hemocyte population appears to be capable of discriminating between stress factors, and even between 2 Vibrio species.
Developmental and Comparative Immunology | 2014
Mylène Toubiana; Umberto Rosani; Sonia Giambelluca; Matteo Cammarata; Marco Gerdol; Alberto Pallavicini; Paola Venier; Philippe Roch
Based on protein domain structure and organization deduced from mRNA contigs, 15 transcripts of the Toll signaling pathway have been identified in the bivalve, Mytilus galloprovincialis. Identical searches performed on publicly available Mytilus edulis ESTs revealed 11 transcripts, whereas searches performed in genomic and new transcriptome sequences of the Pacific oyster, Crassostrea gigas, identified 21 Toll-related transcripts. The remarkable molecular diversity of TRAF and IKK coding sequences of C. gigas, suggests that the sequence data inferred from Mytilus cDNAs may not be exhaustive. Most of the Toll pathway genes were constitutively and ubiquitously expressed in M. galloprovincialis, although at different levels, and clearly induced after in vivo injection with bacteria. Such over-transcription was more rapid and intense with Gram-negative than with Gram-positive bacteria. Injection of a fungus modulated the transcription of few Toll pathway genes, with the induction levels of TLR/MyD88 complex being always less intense. Purified LPS and β-glucans had marginal effect whereas peptidoglycans were ineffective. At the moment, we found no evidence of an IMD transcript in bivalves. In conclusion, mussels possess a complete Toll pathway which can be triggered either by Gram-positive or Gram-negative bacteria.
Journal of Cellular Biochemistry | 2011
Julie Rodriguez; Barbara Vernus; Mylène Toubiana; Elodie Jublanc; Lionel Tintignac; Serge Leibovitch; Anne Bonnieu
Myostatin deficiency leads in skeletal muscle overgrowth but the precise molecular mechanisms underlying this hypertrophy are not well understood. In this study, to gain insight into the role of endogenous myostatin in the translational regulation, we used an in vitro model of cultured satellite cells derived from myostatin knock‐out mice. Our results show that myostatin knock‐out myotubes are larger than control myotubes and that this phenotype is associated with an increased activation of the Akt/mTOR signaling pathway, a known regulator of muscle hypertrophy. These results demonstrate that hypertrophy due to myostatin deficiency is preserved in vitro and suggest that myostatin deletion results in an increased protein synthesis. Accordingly, the rates of global RNA content, polysome formation and protein synthesis are all increased in myostatin‐deficient myotubes while they are counteracted by the addition of recombinant myostatin. We furthermore demonstrated that genetic deletion of myostatin stimulates cap‐dependent translation by positively regulating assembly of the translation preinitiation complex. Together the data indicate that myostatin controls muscle hypertrophy in part by regulating protein synthesis initiation rates, that is, translational efficiency. J. Cell. Biochem. 112: 3531–3542, 2011.
Fish & Shellfish Immunology | 2010
Hui Li; Paola Venier; M. Prado-Alvarez; Camino Gestal; Mylène Toubiana; Rosita Quartesan; Fabio Borghesan; Beatriz Novoa; Antonio Figueras; Philippe Roch
Mussels live in diverse coastal environments experience various physical, chemical and biological conditions, which they counteract with functional adjustments and heritable adaptive changes. In order to investigate possible differences in immune system capabilities, we analyzed by qPCR the expression levels of 4 immune genes (defensin, mytilin B, myticin B, lysozyme) and HSP70 in the Mediterranean mussel, Mytilus galloprovincialis collected in 3 European farming areas {Atlantic Ocean-Ría de Vigo-Spain (RV), French Mediterranean Gulf of Lion-Palavas-Prévost lagoon (PP) and Northern Adriatic Sea-Venice-Italy (VI)} in response to one injection of one of the 3 bacterial species (Vibrio splendidus LGP32, Vibrio anguillarum, Micrococcus lysodeikticus), and to heat shock or cold stress. We confirmed that the 5 genes are constitutively expressed in hemocytes, defensin being the less expressed, myticin B the highest. As suspected, the same gene resulted differently expressed according to mussel group, with the biggest difference being for HSP70 and lysozyme and lowest expression of all the 5 genes in mussels from RV. In addition, gene expression levels varied according to the challenge. Most frequent effect of bacterial injections was down-regulation, especially for mytilin B and myticin B. Heat shock enhanced transcript levels, particularly in mussels from RV, whereas cold stress had no effect. In situ hybridization of labelled probes on mussel hemocytes indicated that bacterial injections did not change the mRNA patterns of defensin and myticin B whereas mytilin B mRNA almost disappeared. In conclusion, these results demonstrated that constitutive level, nature and intensity of immune gene expression regulations strongly depended from mussel group, and support the concept of gene-environment interactions.
Developmental and Comparative Immunology | 2009
Hui Li; Mylène Toubiana; Patrick Monfort; Philippe Roch
Several bivalves, including mussels, suffered from mortalities particularly in summer. To look for the possible effect of environmental parameters on immune capacities, Mytilus galloprovincialis were collected monthly from August 2005 to July 2008 from the Palavas Laguna, French Mediterranean coast. Q-PCR was used to quantify the expression of three antimicrobial peptide genes (defensin, mytilin B and myticin B), in addition to lysozyme and HSP70. House keeping gene was 28S rRNA. Defensin, myticin B and lysozyme appeared more expressed in spring-summer than in winter. In contrast, HSP70 expression was higher in winter. Statistical studies using principal component analysis (PCA) and multiple regression models revealed positive influence of temperature on 28S rRNA, defensin, myticin B and lysozyme expressions, but not on mytilin B and HSP70. The positive influence was significant for defensin and lysozyme expression, but relationships cannot be quantified. Similarly, salinity appeared to influence defensin expression, but this relationship cannot be quantified neither. E. coli tissue content appeared without influence. Consequently, there was no clear relationship between environmental parameters and immune-related gene expressions, demonstrating anti-infectious capabilities cannot be evaluated using only the expression of such genes as markers.
Developmental and Comparative Immunology | 2006
Cinzia Cellura; Mylène Toubiana; Nicolò Parrinello; Philippe Roch
Developmental and Comparative Immunology | 2008
Philippe Roch; Yinshan Yang; Mylène Toubiana; André Aumelas
Fish & Shellfish Immunology | 2007
Cinzia Cellura; Mylène Toubiana; Nicolò Parrinello; Philippe Roch
Marine Biotechnology | 2011
Molruedee Sonthi; Mylène Toubiana; Alberto Pallavicini; Paola Venier; Philippe Roch