Myles Capstick
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myles Capstick.
Magnetic Resonance in Medicine | 2014
Manuel Murbach; Esra Neufeld; Myles Capstick; Wolfgang Kainz; David O. Brunner; Theodoros Samaras; Klaas P. Pruessmann; Niels Kuster
This article investigates the safety of radiofrequency induced local thermal hotspots within a 1.5T body coil by assessing the transient local peak temperatures as a function of exposure level and local thermoregulation in four anatomical human models in different Z‐positions.
Physics in Medicine and Biology | 2009
Sven Kühn; Eugenia Cabot; Andreas Christ; Myles Capstick; Niels Kuster
In this study, the radiation emission from mobile phones when used with wireless and wired hands-free kits (HFK) was evaluated to determine the necessity for a dedicated compliance procedure and the extent to which the use of wired and wireless HFK can reduce human exposure. The specific absorption rates (SAR) from wireless HFK were determined experimentally. Wired HFK were evaluated dosimetrically while connected to mobile phones (GSM900/1800, UMTS1950) under maximized current coupling onto the HFK cable and various wire routing configurations. In addition, experimentally validated simulations of a wired HFK and a mobile phone operating on anatomical whole-body models were performed. The maximum spatial peak SAR in the head when using wired HFK was more than five times lower than ICNIRP limits. The SAR in the head depends on the output power of the mobile phone, the coupling between the antenna and cable, external attenuation and potential cable specific attenuation. In general, a wired HFK considerably reduces the exposure of the entire head region compared to mobile phones operated at the head, even under unlikely worst-case coupling scenarios. However, wired HFK may cause a localized increase of the exposure in the region of the ear inside the head under worst-case conditions. Wireless HFK exhibit a low but constant exposure.
Bioelectromagnetics | 2014
Ilaria Liorni; Marta Parazzini; Serena Fiocchi; Mark Douglas; Myles Capstick; Marie-Christine Gosselin; Niels Kuster; Paolo Ravazzani
In this paper, fetal exposure to uniform magnetic fields (MF) with different polarizations is quantified at 50 Hz. Numerical computations were performed on high-resolution pregnant models at 3, 7, and 9 months of gestational age (GA), that distinguish a high number of fetal tissues. Fetal whole-body and tissue-specific induced electric fields (E) and current densities (J) were analyzed as a function of both the extremely low frequency magnetic field (ELF-MF) polarization and GA. Additionally, the induced field variation due to changes in fetal position was analyzed by means of two new pregnant models. The uncertainty budget due to the grid resolution was also calculated. Finally, the compliance of the fetal exposure to the ICNIRP Guidelines was checked. A fetal exposure matrix was built at 50 Hz, which could be used to further investigate possible interaction mechanisms between ELF-MF and the associated health risk. Some specific findings were: (1) the induced fields increased with GA; (2) the maxima E were found in skin and fat tissues at each GA; (3) fetal tissue-specific exposure was modified as a function of GA and polarization; (4) the change of the fetal position in the womb significantly modified the induced E in some fetal tissues; (5) the induced fields were in compliance with ICNIRP Guidelines and the results were quite below the permitted threshold limit.
Bioelectromagnetics | 2012
Jagadish Nadakuduti; Mark Douglas; Myles Capstick; Sven Kühn; Niels Kuster
The development of scientifically sound instrumentation, methods, and procedures for the electromagnetic exposure assessment of compact fluorescent lamps (CFLs) is investigated. The incident and induced fields from 11 CFLs have been measured in the 10 kHz-1 MHz range, and they are compared with the levels for incandescent and light emitting diode (LED) bulbs. Commercially available equipment was used to measure the incident fields, while a novel sensor was built to assess the induced fields in humans. Incident electric field levels significantly exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at close distances for some sources, while the induced fields are within the ICNIRP basic restrictions. This demonstrates the importance of assessing the induced fields rather than the incident fields for these sources. Maximum current densities for CFLs are comparable to the limits (in the range of 9% to 56%), demonstrating the need for measurements to establish compliance. For the frequency range investigated, the induced fields were found to be considerably higher for CFLs than for incandescent light bulbs, while the exposure from the two LED bulbs was low. The proposed instrumentation and methods offer several advantages over an existing measurement standard, and the measurement uncertainty is significantly better than the assessment of electric and magnetic fields at close distances.
BMC Veterinary Research | 2014
Michael Hässig; Marietta Wullschleger; Hanspeter Naegeli; J. Kupper; Bernhard M. Spiess; Niels Kuster; Myles Capstick; Manuel Murbach
BackgroundThe influence of electromagnetic fields on the health of humans and animals is still an intensively discussed and scientifically investigated issue (Prakt Tierarzt 11:15-20, 2003; Umwelt Medizin Gesellschaft 17:326-332, 2004; J Toxicol Environment Health, Part B 12:572–597, 2009). We are surrounded by numerous electromagnetic fields of variable strength, coming from electronic equipment and its power cords, from high-voltage power lines and from antennas for radio, television and mobile communication. Particularly the latter cause’s controversy, as everyone likes to have good mobile reception at anytime and anywhere, whereas nobody wants to have such a basestation antenna in their proximity.ResultsIn this experiment, the NIR has resulted in changes in the enzyme activities. Certain enzymes were disabled, others enabled by NIR. Furthermore, individual behavior patterns were observed. While certain cows reacted to NIR, others did not react at all, or even inversely.ConclusionThe present results coincide with the information from the literature, according to which NIR leads to changes in redox proteins, and that there are individuals who are sensitive to radiation and others that are not. However, the latter could not be distinctly attributed – there are cows that react clearly with one enzyme while they do not react with another enzyme at all, or even the inverse. The study approach of testing ten cows each ten times during three phases has proven to be appropriate. Future studies should however set the post-exposure phase later on.
Environmental Research | 2017
Kajal Kumari; Myles Capstick; A.M. Cassara; Mikko Herrala; Hennariikka Koivisto; Jonne Naarala; Heikki Tanila; Matti Viluksela; Jukka Juutilainen
Abstract Human exposure to intermediate frequency (IF) fields is increasing due to new applications such as electronic article surveillance systems, wireless power transfer and induction heating cookers. However, limited data is available on effects of IF magnetic fields (MF) on male fertility function. This study was conducted to assess possible effects on fertility indicators from exposure to IF MF. Male C57BL/6J mice were exposed continuously for 5 weeks to 7.5 kHz MF at 12 and 120 &mgr;T. Sperm cells from cauda epididymis were analysed for motility, total sperm counts, and head abnormalities. Motile sperm cells were classified as progressive or non‐progressive. Testicular spermatid heads were counted as well. The body weight development and reproductive tissue weights were not affected. No exposure‐related differences were observed in sperm counts or sperm head abnormalities. Proportion of non‐motile cells was significantly decreased in the 120 &mgr;T group, and a corresponding increase was seen in the percentage of motile cells (significant in non‐progressive motile cells). In conclusion, no adverse effects on fertility indicators were observed. Increased sperm motility is an interesting finding that needs to be confirmed in further studies. HighlightsHuman exposure to intermediate frequency magnetic fields is increasing.Mice were exposed to 7.5 kHz magnetic fields to evaluate possible effects on male fertility.No adverse effects on fertility indicators were observed.Sperm motility was increased in the highest exposure group.
Bioelectromagnetics | 2016
Yijian Gong; Myles Capstick; Thomas Tillmann; Clemens Dasenbrock; Theodoros Samaras; Niels Kuster
This paper describes a new approach to the risk assessment of exposure from wireless network devices, including an exposure setup and dosimetric assessment for in vivo studies. A novel desktop reverberation chamber has been developed for well-controlled exposure of mice for up to 24 h per day to address the biological impact of human exposure scenarios by wireless networks. The carrier frequency of 2.45 GHz corresponds to one of the major bands used in data communication networks and is modulated by various modulation schemes, including Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Radio Frequency Identification (RFID), and wireless local area network, etc. The system has been designed to enable exposures of whole-body averaged specific absorption rate (SAR) of up to 15 W/kg for six mice of an average weight of 25 g or of up to 320 V/m incident time-averaged fields under loaded conditions without distortion of the signal. The dosimetry for whole-body SAR and organ-averaged SAR of the exposed mice, with analysis of uncertainty and variation analysis, is assessed. The experimental dosimetry based on temperature measurement agrees well with the numerical dosimetry, with a very good SAR uniformity of 0.4 dB in the chamber. Furthermore, a thermal analysis and measurements were performed to provide better understanding of the temperature load and distribution in the mice during exposure.
ieee antennas and propagation society international symposium | 2009
Chung-Huan Li; Myles Capstick; Esra Neufeld; Nicolas Chavannes; Niels Kuster
In this paper, for hyperthermia treatment at head and neck region, the optimized patient positions were proposed for different target regions with the proposed applicator. The simulation results showed that the optimization of the patient positions makes more elements have significant contribution. More important, the applicator with the optimized patient positions provides sufficient exposure to all possible locations of tumor in the patients neck with good resolution of EM power deposition after the position optimization.
Bioelectromagnetics | 2018
Michael E. Wyde; Thomas L. Horn; Myles Capstick; John M. Ladbury; Galen H. Koepke; Perry F. Wilson; Grace E. Kissling; Matthew D. Stout; Niels Kuster; Ronald L. Melnick; James R. Gauger; John R. Bucher; David L. McCormick
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short-term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague-Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR-dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR-mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190-199, 2018.
Bioelectromagnetics | 2013
Myles Capstick; Primo Schär; David Schuermann; Albert Romann; Niels Kuster
A programmable system has been developed for the study of both transient and persistent effects of extremely low frequency (ELF) magnetic field exposure of cell cultures. This high-precision exposure system enables experimental blinding and fully characterized exposure while simultaneously allowing live cell imaging. It is based on a live imaging cell around which two asymmetrical coils are wound in good thermal contact to a temperature-controlled water jacket, and is mounted on a microscope stage insert. The applied B-field uniformity of the active volume is better than 1.2% with an overall exposure uncertainty of less than 4.3% with very low transient field levels. The computer-controlled apparatus allows signal waveforms that are sinusoidal or composed of several harmonics, blind protocols, and monitoring of exposure and environmental conditions. B-fields up to 4 mT root mean square amplitude are possible with minimal temperature variation and no recognizable temperature differences between exposure and sham states. Sources of artifacts have been identified and quantified. There are no visible vibrations observable even at the highest magnifications and exposure levels.