Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myles Jones is active.

Publication


Featured researches published by Myles Jones.


NeuroImage | 2001

Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex.

Myles Jones; Jason Berwick; Dave Johnston; John E. W. Mayhew

Functional magnetic resonance imaging (fMRI) is based on the coupling between neural activity and changes in the concentration of the endogenous paramagnetic contrast agent deoxygenated hemoglobin. Changes in the blood oxygen level-dependent (BOLD) signal result from a complex interplay of blood volume, flow, and oxygen consumption. Optical imaging spectroscopy (OIS) has been used to measure changes in blood volume and saturation in response to increased neural activity, while laser Doppler Flowmetry (LDF) can be used to measure flow changes and is now commonplace in neurovascular research. Here, we use concurrent OIS and LDF to examine the hemodynamic response in rodent barrel cortex using electrical stimulation of the whisker pad at varying intensities. Spectroscopic analysis showed that stimulation produced a biphasic early increase in deoxygenated hemoglobin (Hbr), followed by a decrease below baseline, reaching minima at approximately 3.7 s. There was no evidence for a corresponding early decrease in oxygenated hemoglobin (HbO(2)), which simply increased after stimulation, reaching maximum at approximately 3.2 s. The time courses of changes in blood volume (CBV) and blood flow (CBF) were similar. Both increased within a second of stimulation onset and peaked at approximately 2.7 s, after which CBV returned to baseline at a slower rate than CBF. The changes in Hbr, Hbt, and CBF were used to estimate changes in oxygen consumption (CMRO(2)), which increased within a second of stimulation and peaked approximately 2.2 s after stimulus onset. Analysis of the relative magnitudes of CBV and CBF indicates that the fractional changes of CBV could be simply scaled to match those of CBF. We found the relationship to be well approximated by CBV = CBF(0.29). A similar relationship was found using the response to elevated fraction of inspired carbon dioxide (FICO(2)).


NeuroImage | 2000

Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex.

John E. W. Mayhew; David Johnston; Jason Berwick; Myles Jones; Peter J. Coffey; Ying Zheng

This research investigates the hemodynamic response to stimulation of the barrel cortex in anaesthetized rats using optical imaging and spectroscopy (Bonhoeffer and Grinvald, 1996; Malonek and Grinvald, 1996; Mayhew et al., 1999). A slit spectrograph was used to collect spectral image data sequences. These were analyzed using an algorithm that corrects for the wavelength dependency in the optical path lengths produced by the light scattering properties of tissue. The analysis produced the changes in the oxy- and deoxygenation of hemoglobin following stimulation. Two methods of stimulation were used. One method mechanically vibrated a single whisker, the other electrically stimulated the whisker pad. The electrical stimulation intensity varied from 0.4 to 1.6 mA. The hemodynamic responses to stimulation increased as a function of intensity. At 0.4 mA they were commensurate with those from the mechanical stimulation; however, the responses at the higher levels were greater by a factor of approximately 10. For both methods of data collection, the results of the spectroscopic analysis showed an early increase in deoxygenated hemoglobin (Hbr) with no evidence for a corresponding decrease in oxygenated hemoglobin (HbO(2)). Evidence for increased oxygen consumption (CMRO(2)) was obtained by converting the fractional changes in blood volume (Hbt) into estimates of changes in blood flow (Grubb et al., 1974) and using the resulting time course to scale the fractional changes in Hbr. The results show an early increase CMRO(2) peaking approximately 2 s after stimulation onset. Using these methods, we find evidence for increased oxygen consumption following increased neural activity even at low levels of stimulation intensity.


Journal of Cerebral Blood Flow and Metabolism | 2003

The hemodynamic impulse response to a single neural event.

John Martindale; John E. W. Mayhew; Jason Berwick; Myles Jones; Chris Martin; Dave Johnston; Peter Redgrave; Ying Zheng

This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (≤2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single “neural event” from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.


The Journal of Neuroscience | 2010

Negative Blood Oxygen Level Dependence in the Rat:A Model for Investigating the Role of Suppression in Neurovascular Coupling

Luke Boorman; Aneurin J. Kennerley; David Johnston; Myles Jones; Ying Zheng; Peter Redgrave; Jason Berwick

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.


NeuroImage | 2004

Nonlinear coupling of neural activity and CBF in rodent barrel cortex

Myles Jones; Nicola Hewson-Stoate; John Martindale; Peter Redgrave; John E. W. Mayhew

The relationship between neural activity and accompanying changes in cerebral blood flow (CBF) and oxygenation must be fully understood before data from brain imaging techniques can be correctly interpreted. Whether signals in fMRI reflect the neural input or output of an activated region is still unclear. Similarly, quantitative relationships between neural activity and changes in CBF are not well understood. The present study addresses these issues by using simultaneous laser Doppler flowmetry (LDF) to measure CBF and multichannel electrophysiology to record neural activity in the form of field potentials and multiunit spiking. We demonstrate that CBF-activation coupling is a nonlinear inverse sigmoid function. Comparing the data with previous work suggests that within a cortical model, CBF shows greatest spatial correlation with a current sink 500 microm below the surface corresponding to sensory input. These results show that care must be exercised when interpreting imaging data elicited by particularly strong or weak stimuli and that hemodynamic changes may better reflect the input to a region rather than its spiking output.


European Journal of Neuroscience | 2005

Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex

Jason Berwick; David Johnston; Myles Jones; John Martindale; Peter Redgrave; Niall McLoughlin; Ingo Schiessl; John E. W. Mayhew

Optical imaging slit spectroscopy is a powerful method for estimating quantitative changes in cerebral haemodynamics, such as deoxyhaemoglobin, oxyhaemoglobin and blood volume (Hbr, HbO2 and Hbt, respectively). Its disadvantage is that there is a large loss of spatial data as one image dimension is used to encode spectral wavelength information. Single wavelength optical imaging, on the other hand, produces high‐resolution spatiotemporal maps of brain activity, but yields only indirect measures of Hbr, HbO2 and Hbt. In this study we perform two‐dimensional optical imaging spectroscopy (2D‐OIS) in rat barrel cortex during contralateral whisker stimulation to obtain two‐dimensional maps over time of Hbr, HbO2 and Hbt. The 2D‐OIS was performed by illuminating the cortex with four wavelengths of light (575, 559, 495 and 587 nm), which were presented sequentially at a high frame rate (32 Hz). The contralateral whisker pad was stimulated using two different durations: 1 and 16 s (5 Hz, 1.2 mA). Control experiments used a hypercapnic (5% CO2) challenge to manipulate baseline blood flow and volume in the absence of corresponding neural activation. The 2D‐OIS method allowed separation of artery, vein and parenchyma regions. The magnitude of the haemodynamic response elicited varied considerably between different vascular compartments; the largest responses in Hbt were in the arteries and the smallest in the veins. Phase lags in the HbO2 response between arteries and veins suggest that a process of upstream signalling maybe responsible for dilating the arteries. There was also a consistent increase in Hbr from arterial regions after whisker stimulation.


NeuroImage | 2005

Further nonlinearities in neurovascular coupling in rodent barrel cortex

Nicola Hewson-Stoate; Myles Jones; John Martindale; Jason Berwick; John E. W. Mayhew

An essential prerequisite for the accurate interpretation of noninvasive functional brain imaging techniques, such as blood oxygen level dependent (BOLD) fMRI, is a thorough understanding of the coupling relationship between neural activity and the haemodynamic response. The current study investigates this relationship using rat barrel cortex as a model. Neural input was measured by applying current source density (CSD) analysis to multi-laminar field potentials to remove ambiguities regarding the origin of the signal inherent in single electrode recordings. Changes in cerebral blood flow (CBF) were recorded with a laser Doppler flowmetry probe. The magnitude of neural and CBF responses were modulated over a large range by altering both the intensity and frequency of electrical whisker pad stimulation. Consistent with previous findings [Devor, A., et al., 2003. Neuron 39, 353-359; Sheth, S.A., et al., 2004. Neuron 42, 347-355] a power law function well described the relationship between neural activity and haemodynamics. Despite the nonlinearity of the coupling over the whole data set, the relationship was very well approximated by a linear function over mid-range stimuli. Altering the frequency of stimulation at 1.2 mA shifted the neural activity and corresponding haemodynamic response along this linear region, reconciling recent reports of a nonlinear relationship [Devor, A., et al., 2003. Neuron 39, 353-359; Jones, M., et al., 2004. NeuroImage 22, 956-965; Sheth, S.A., et al., 2004. Neuron 42, 347-355] with previous work that found a linear coupling relationship when altering stimulation frequency [Martindale, J., et al., 2003. J. Cereb. Blood Flow Metab. 23, 546-555; Ngai, A.C., et al., 1999. Brain Res. 837, 221-228; Sheth, S., et al., 2003. NeuroImage 19, 884-894]. Using stimuli within this linear range in imaging studies would simplify the interpretation of findings.


Journal of Cerebral Blood Flow and Metabolism | 2002

Hemodynamic response in the unanesthetized rat : intrinsic optical imaging and spectroscopy of the barrel cortex

Jason Berwick; Chris Martin; John Martindale; Myles Jones; Dave Johnston; Ying Zheng; Peter Redgrave; John E. W. Mayhew

Optical imaging spectroscopy was used to measure the hemodynamic response of somatosensory cortex to stimulation of the whiskers. Responses to brief puffs of air were compared in anesthetized and unanesthetized rats. The hemodynamic response was approximately four times larger in the unanesthetized animal than the corresponding anesthetized animal. In unanesthetized animals, a short-latency (approximately 400 milliseconds) short-duration (approximately 300 milliseconds) hemodynamic startle response was observed. General linear model analysis was used to extract this component from the time series, and revealed an underlying short-latency increase in deoxygenated hemoglobin in response to somatosensory stimulation. It is proposed that anesthesia can have a marked affect on the relation between changes in blood volume and blood flow. This work represents a step in the development of an experimental model that can be used to investigate fundamental neurologic processes in the awake-behaving rodent.


Journal of Cerebral Blood Flow and Metabolism | 2004

A Model of the Dynamic Relationship Between Blood Flow and Volume Changes During Brain Activation

Yazhuo Kong; Ying Zheng; David Johnston; John Martindale; Myles Jones; S.A. Billings; John E. W. Mayhew

The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level–dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBVαCBFΦ has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.


European Journal of Neuroscience | 2006

Haemodynamic and neural responses to hypercapnia in the awake rat

Chris Martin; Myles Jones; John Martindale; John E. W. Mayhew

The relationship between localized changes in brain activity and metabolism, and the blood oxygenation level‐dependent (BOLD) signal used in functional magnetic resonance imaging studies is not fully understood. One source of complexity is that stimulus‐elicited changes in the BOLD signal arise both from changes in oxygen consumption due to increases in activity and purely ‘haemodynamic’ changes such as increases in cerebral blood flow. It is well established that robust cortical haemodynamic changes can be elicited by increasing the concentration of inspired CO2 (inducing hypercapnia) and it is widely believed that these haemodynamic changes occur without significant effects upon neural activity or cortical metabolism. Hypercapnia is therefore commonly used as a calibration condition in functional magnetic resonance imaging studies to enable estimation of oxidative metabolism from subsequent stimulus‐evoked functional magnetic resonance imaging BOLD signal changes. However, there is little research that has investigated in detail the effects of hypercapnia upon all components of the haemodynamic response (changes in cerebral blood flow, volume and oxygenation) in addition to recording neural activity. In awake animals, we used optical and electrophysiological techniques to measure cortical haemodynamic and field potential responses to hypercapnia (60 s, 5% CO2). The main findings are that firstly, in the awake rat, the temporal structure of the haemodynamic response to hypercapnia differs from that reported previously in anaesthetized preparations in that the response is more rapid. Secondly, there is evidence that hypercapnia alters ongoing neural activity in awake rats by inducing periods of cortical desynchronization and this may be associated with changes in oxidative metabolism.

Collaboration


Dive into the Myles Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zheng

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Martin

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge