Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myoung Suk Seo is active.

Publication


Featured researches published by Myoung Suk Seo.


Experimental and Molecular Medicine | 2007

Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex

Myoung-Sun Roh; Myoung Suk Seo; Yeni Kim; Se Hyun Kim; Won Je Jeon; Yong Min Ahn; Ung Gu Kang; Yong Sung Juhnn; Yong Sik Kim

Glycogen synthase kinase 3 (GSK3) was recently suggested to be a potential target of psychotropics used in psychiatric illnesses such as schizophrenia and bipolar disorder. Relevant studies have found that antipsychotic drugs regulate GSK3 activity via an increase in either inhibitory serine phosphorylation or amount of GSK3 after acute or subchronic treatment. Recent evidence shows that GSK3 is regulated by dopaminergic or serotonergic systems implicated in the pathophysiology and treatment mechanisms of schizophrenia and bipolar disorder. Therefore, antipsychotics may regulate GSK3 via antagonizing dopaminergic or serotonergic activity. However, the signaling pathway that is involved in GSK3 regulation by dopaminergic or serotonergic systems has not been well established. Haloperidol is a typical antipsychotic with potent dopamine D2 receptor antagonism. Clozapine is an atypical antipsychotic with potent serotonin 5HT2 receptor antagonism. We injected rats with haloperidol or clozapine and examined the phosphorylation and amount of GSK3α/β and its well-known upstream regulators Akt and Dvl in the rat frontal cortex by Western blotting. Both haloperidol and clozapine induced Ser21/9 phosphorylation of GSK3GSK3α/β. Haloperidol increased the Ser473 phosphorylation of Akt transiently, whereas clozapine maintained the increase for 1 h. Haloperidol did not affect the phosphorylation and amount of Dvl, whereas clozapine increased both phosphorylation and the amount of Dvl. Our results suggest that GSK3 activity may be regulated by both typical and atypical antipsychotics and that Akt or Dvl, depending on the D2- or 5HT2- receptor antagonism properties of typical and atypical antipsychotics, mediate the regulation differently.


Translational Psychiatry | 2013

Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA

Elizabeth Scarr; Jeffrey M. Craig; Mj Cairns; Myoung Suk Seo; John C. Galati; Nj Beveridge; Andrew Gibbons; S Juzva; B. Weinrich; Mandy Parkinson-Bates; Ap Carroll; Richard Saffery; Brian Dean

Many studies have shown decreased cortical muscarinic M1 receptors (CHRM1) in schizophrenia (Sz), with one study showing Sz can be separated into two populations based on a marked loss of CHRM1 (∼75%) in ∼25% of people (Def-Sz) with the disorder. To better understand the mechanism contributing to the loss of CHRM1 in Def-Sz, we measured specific markers of gene expression in the cortex of people with Sz as a whole, people differentiated into Def-Sz and people with Sz that do not have a deficit in cortical CHRM1 (Non-Def-Sz) and health controls. We now report that cortical CHRM1 gene promoter methylation and CHRM1 mRNA are decrease in Sz, Def-Sz and Non-Def-Sz but levels of the micro RNA (miR)-107, a CHRM1 targeting miR, are increased only in Def-Sz. We also report in vitro data strongly supporting the notion that miR-107 levels regulate CHRM1 expression. These data suggest there is a reversal of the expected inverse relationship between gene promoter methylation and CHRM1 mRNA in people with Sz and that a breakdown in gene promoter methylation control of CHRM1 expression is contributing to the global pathophysiology of the syndrome. In addition, our data argues that increased levels of at least one miR, miR-107, is contributing to the marked loss of cortical CHRM1 in Def-Sz and this may be a differentiating pathophysiology. These latter data continue to support the hypothesis that microRNAs (miRNA) have a role in the underlying neurobiology of Sz but argue they are differentially affected in subsets of people within that syndrome.


Cns & Neurological Disorders-drug Targets | 2010

Treating Schizophrenia: Novel Targets for the Cholinergic System

Tammie Money; Elizabeth Scarr; Madhara Udawela; Andrew Gibbons; Won Je Jeon; Myoung Suk Seo; Brian Dean

Cognitive deficits in patients with schizophrenia are the biggest obstacle to achieving an independent and productive lifestyle, with these deficits being refractory to current drug treatments. Significantly, both nicotinic and muscarinic receptors (cholinoceptors) have been shown to have an important role in cognition and are therefore viewed as potential therapeutic targets for drugs designed to lessen cognitive deficits. Importantly, the demonstration that acetylcholinesterase inhibitors, which result in higher synaptic levels of acetylcholine, can reduce the cognitive deficits of schizophrenia suggested that under-stimulation of cholinoceptors could be associated with the cognitive deficits associated with this disorder. This has lead to a focus on the development of receptor agonists, partial agonists and allosteric agonists that can be used to stimulate cholinergic pathways and thus reduce the cognitive deficits of schizophrenia. In addition, muscarinic receptors have now been associated with the modulation of dopamine and may constitute an alternative target for the treatment of psychoses. Given these exciting new therapeutic initiatives, this review will outline current evidence that involves the cholinoceptors in the pathophysiology of schizophrenia and how these data can inform on approaches to more targeted treatments for the disorder.


The International Journal of Neuropsychopharmacology | 2014

Lower cortical serotonin 2A receptors in major depressive disorder, suicide and in rats after administration of imipramine

Brian Dean; Nahed Tawadros; Myoung Suk Seo; Won Je Jeon; Ian Everall; Elizabeth Scarr; Andrew Gibbons

We have attempted to replicate studies showing higher levels of serotonin 2A receptors (HTR2A) in the cortex of people with mood disorders and to determine the effects of treating rats with antidepressant drugs on levels of that receptor. In situ [3H]ketanserin binding and autoradiography was used to measure levels of HTR2A in Brodmanns area (BA) 46 and 24 from people with major depressive disorders (MDD, n = 16), bipolar disorders (BD, n = 14) and healthy controls (n = 14) as well as the central nervous system (CNS) of rats (20 per treatment arm) treated for 10 or 28 d with fluoxetine (10 mg/kg/d) or imipramine (20 mg/kg/d). Compared with controls, HTR2A were lower in BA 24, but not BA 46, from people with MDD (p = 0.005); HTR2A were not changed in BD. Levels of HTR2A were lower in BA 24 (p = 0.007), but not BA 46, from people who had died by suicide. Finally, levels of HTR2A were lower in the CNS of rats treated with imipramine, but not fluoxetine, for 28 d, but not 10 d. From our current and previous data we conclude cortical HTR2A are lower in schizophrenia, MDD, people with mood disorders who died by suicide, rats treated with some antipsychotic or some antidepressant drugs. As levels of cortical HTR2A can be affected by the aetiologies of different disorders and mechanisms of action of different drugs, a better understanding of how such changes can occur needs to be elucidated.


Frontiers in Bioscience | 2011

The neurobiology of APOE in schizophrenia and mood disorders.

Andrew Gibbons; Madhara Udawela; Won Je Jeon; Myoung Suk Seo; L Brooks; Brian Dean

APOE is a major component of several lipoproteins. In addition to its role as a lipid transport protein APOE also serves a dual role as a glial derived, synaptic signalling molecule and thought to play an important role in synaptic plasticity and cognition. Polymorphisms within the APOE gene have been associated with the incidence of Alzheimers disease. In light of the similarities in the cognitive deficits experienced in both Alzheimers disease and schizophrenia as well as the comorbidity of depression in Alzheimers disease, aberrant APOE signalling has been implicated in the pathologies of schizophrenia and mood disorders. The schizophrenia candidate gene, reelin, also shares common receptors with APOE, further supporting a role for APOE in the pathology of these disorders. This review will summarise the current understanding of the involvement of APOE and its receptors in the symptomatology and pathology of schizophrenia and mood disorders and the implications of this involvement for drug treatment.


npj Schizophrenia | 2016

Increased cortical expression of the zinc transporter SLC39A12 suggests a breakdown in zinc cellular homeostasis as part of the pathophysiology of schizophrenia.

Elizabeth Scarr; Madhara Udawela; Mark Greenough; Jaclyn Neo; Myoung Suk Seo; Tammie Money; Aradhana Upadhyay; Ashley I. Bush; Ian Everall; Elizabeth A. Thomas; Brian Dean

Our expression microarray studies showed messenger RNA (mRNA) for solute carrier family 39 (zinc transporter), member 12 (SLC39A12) was higher in dorsolateral prefrontal cortex from subjects with schizophrenia (Sz) in comparison with controls. To better understand the significance of these data we ascertained whether SLC39A12 mRNA was altered in a number of cortical regions (Brodmann’s area (BA) 8, 9, 44) from subjects with Sz, in BA 9 from subjects with mood disorders and in rats treated with antipsychotic drugs. In addition, we determined whether inducing the expression of SLC39A12 resulted in an increased cellular zinc uptake. SLC39A12 variant 1 and 2 mRNA was measured using quantitative PCR. Zinc uptake was measured in CHO cells transfected with human SLC39A12 variant 1 and 2. In Sz, compared with controls, SLC39A12 variant 1 and 2 mRNA was higher in all cortical regions studied. The were no differences in levels of mRNA for either variant of SLC39A12 in BA 9 from subjects with mood disorders and levels of mRNA for Slc39a12 was not different in the cortex of rats treated with antipsychotic drugs. Finally, expressing both variants in CHO-K1 cells was associated with an increase in radioactive zinc uptake. As increased levels of murine Slc39a12 mRNA has been shown to correlate with increasing cellular zinc uptake, our data would be consistent with the possibility of a dysregulated zinc homeostasis in the cortex of subjects with schizophrenia due to altered expression of SLC39A12.


Translational Psychiatry | 2015

SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia

Madhara Udawela; Tammie Money; Jaclyn Neo; Myoung Suk Seo; Elizabeth Scarr; Brian Dean; Ian Everall

Selenium binding protein 1 (SELENBP1) messenger RNA (mRNA) has previously been shown to be upregulated in the brain and blood from subjects with schizophrenia. We aimed to validate these findings in a new cohort using real-time PCR in Brodmann’s Area (BA) 9, and to determine the disease specificity of increased SELENBP1 expression by measuring SELENBP1 mRNA in subjects with major depressive disorder and bipolar disorder. We then extended the study to include other cortical regions such as BA8 and BA44. SELENBP1 mRNA was higher in BA9 (P=0.001), BA8 (P=0.003) and BA44 (P=0.0007) from subjects with schizophrenia. Conversely, in affective disorders, there was no significant difference in SELENBP1 mRNA in BA9 (P=0.67), suggesting that the upregulation may be diagnosis specific. Measurement of SELENBP1 protein levels showed that changes in mRNA did not translate to changes in protein. In addition, chronic treatment of rats with antipsychotics did not significantly affect the expression of Selenbp1 in the cortex (P=0.24). Our data show that elevated SELENBP1 transcript expression is widespread throughout the prefrontal cortex in schizophrenia, and confirm that this change is a consistent feature of schizophrenia and not a simple drug effect.


Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology | 2014

Potential molecular and cellular mechanism of psychotropic drugs.

Myoung Suk Seo; Elizabeth Scarr; Chi-Yu Lai; Brian Dean

Psychiatric disorders are among the most debilitating of all medical illnesses. Whilst there are drugs that can be used to treat these disorders, they give sub-optimal recovery in many people and a significant number of individuals do not respond to any treatments and remain treatment resistant. Surprisingly, the mechanism by which psychotropic drugs cause their therapeutic benefits remain unknown but likely involves the underlying molecular pathways affected by the drugs. Hence, in this review, we have focused on recent findings on the molecular mechanism affected by antipsychotic, mood stabilizing and antidepressant drugs at the levels of epigenetics, intracellular signalling cascades and microRNAs. We posit that understanding these important interactions will result in a better understanding of how these drugs act which in turn may aid in considering how to develop drugs with better efficacy or increased therapeutic reach.


Schizophrenia Research | 2014

An investigation of the factors that regulate muscarinic receptor expression in schizophrenia.

Myoung Suk Seo; Elizabeth Scarr; Brian Dean

We previously identified a group of subjects with schizophrenia who, on average, have a 75% decrease in cholinergic receptor, muscarinic 1 (CHRM1) in Brodmanns area (BA) 9. To extend this finding, we determined i) if the decrease in CHRM1 was present in another functionally related CNS region (BA6), ii) whether the marked decrease in CHRM1 was accompanied by changes in levels of other CHRMs and iii) potential factors responsible for the decreased CHRM1 expression. We measured CHRM1 and CHRM3 using in situ radioligand binding with [(3)H]pirenzepine and [(3)H]4-DAMP respectively in BA6 from 20 subjects with schizophrenia who had low levels of CHRM1 in BA9 (SzLow[(3)H]PZP), 18 subjects with schizophrenia whose levels of CHRM1 were similar to controls (SzNormal[(3)H]PZP) and 20 control subjects. Levels of CHRM1, 3 and 4 mRNA were measured using qPCR and levels of the transcription factors, SP1 and SP3, were determined using Western blots. In BA6, the density of [(3)H]pirenzepine binding was decreased in subjects with SzLow[(3)H]PZP (p<0.001) compared to controls. The density of [(3)H]4-DAMP binding, levels of CHRM1, 3 and 4 mRNA and levels of SP1 and SP3 was not significantly different between the three groups. This study shows that the previously identified decrease in CHRM1 expression is not confined to the dorsolateral prefrontal cortex but is present in other cortical areas. The effect shows some specificity to CHRM1, with no change in levels of binding to CHRM3. Furthermore, this decrease in CHRM1 does not appear to be associated with low levels of CHRM1 mRNA or to simply be regulated by the transcription factors, SP1 and SP3, suggesting that other mechanisms are responsible for the decreased CHRM1 in these subjects.


Journal of Psychiatry & Neuroscience | 2018

Low levels of muscarinic M1 receptor–positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia

Elizabeth Scarr; Shaun Hopper; Valentina Vos; Myoung Suk Seo; Ian Everall; Tim D. Aumann; Gursharan Chana; Brian Dean

BACKGROUND Results of neuroimaging and postmortem studies suggest that people with schizophrenia may have lower levels of muscarinic M1 receptors (CHRM1) in the cortex, but not in the hippocampus or thalamus. Here, we use a novel immunohistochemical approach to better understand the likely cause of these low receptor levels. METHODS We determined the distribution and number of CHRM1-positive (CHRM1+) neurons in the cortex, medial dorsal nucleus of the thalamus and regions of the hippocampus from controls (n = 12, 12 and 5, respectively) and people with schizophrenia (n = 24, 24 and 13, respectively). RESULTS Compared with controls, levels of CHRM1+ neurons in people with schizophrenia were lower on pyramidal cells in layer III of Brodmann areas 9 (-44%) and 17 (-45%), and in layer V in Brodmann areas 9 (-45%) and 17 (-62%). We found no significant differences in the number of CHRM1+ neurons in the medial dorsal nucleus of the thalamus or in the hippocampus. LIMITATIONS Although diagnostic cohort sizes were typical for this type of study, they were relatively small. As well, people with schizophrenia were treated with antipsychotic drugs before death. CONCLUSION The loss of CHRM1+ pyramidal cells in the cortex of people with schizophrenia may underpin derangements in the cholinergic regulation of GABAergic activity in cortical layer III and in cortical/subcortical communication via pyramidal cells in layer V.

Collaboration


Dive into the Myoung Suk Seo's collaboration.

Top Co-Authors

Avatar

Brian Dean

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Everall

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won Je Jeon

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Tammie Money

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaclyn Neo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Tim D. Aumann

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge