Myra K. Derbyshire
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myra K. Derbyshire.
Nucleic Acids Research | 2011
Shennan Lu; John B. Anderson; Farideh Chitsaz; Myra K. Derbyshire; Carol DeWeese-Scott; Jessica H. Fong; Lewis Y. Geer; Renata C. Geer; Noreen R. Gonzales; Marc Gwadz; David I. Hurwitz; John D. Jackson; Zhaoxi Ke; Christopher J. Lanczycki; Fu-Ping Lu; Gabriele H. Marchler; Mikhail Mullokandov; Marina V. Omelchenko; Cynthia L. Robertson; James S. Song; Narmada Thanki; Roxanne A. Yamashita; Dachuan Zhang; Naigong Zhang; Chanjuan Zheng; Stephen H. Bryant
NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.
Nucleic Acids Research | 2015
Myra K. Derbyshire; Noreen R. Gonzales; Shennan Lu; Farideh Chitsaz; Lewis Y. Geer; Renata C. Geer; Jane He; Marc Gwadz; David I. Hurwitz; Christopher J. Lanczycki; Fu Lu; Gabriele H. Marchler; James S. Song; Narmada Thanki; Zhouxi Wang; Roxanne A. Yamashita; Dachuan Zhang; Chanjuan Zheng; Stephen H. Bryant
NCBIs CDD, the Conserved Domain Database, enters its 15th year as a public resource for the annotation of proteins with the location of conserved domain footprints. Going forward, we strive to improve the coverage and consistency of domain annotation provided by CDD. We maintain a live search system as well as an archive of pre-computed domain annotation for sequences tracked in NCBIs Entrez protein database, which can be retrieved for single sequences or in bulk. We also maintain import procedures so that CDD contains domain models and domain definitions provided by several collections available in the public domain, as well as those produced by an in-house curation effort. The curation effort aims at increasing coverage and providing finer-grained classifications of common protein domains, for which a wealth of functional and structural data has become available. CDD curation generates alignment models of representative sequence fragments, which are in agreement with domain boundaries as observed in protein 3D structure, and which model the structurally conserved cores of domain families as well as annotate conserved features. CDD can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.
Nucleic Acids Research | 2009
John B. Anderson; Farideh Chitsaz; Myra K. Derbyshire; Carol DeWeese-Scott; Jessica H. Fong; Lewis Y. Geer; Renata C. Geer; Noreen R. Gonzales; Marc Gwadz; Siqian He; David I. Hurwitz; John D. Jackson; Zhaoxi Ke; Christopher J. Lanczycki; Cynthia A. Liebert; Chunlei Liu; Fu-er Lu; Shennan Lu; Gabriele H. Marchler; Mikhail Mullokandov; James S. Song; Asba Tasneem; Narmada Thanki; Roxanne A. Yamashita; Dachuan Zhang; Naigong Zhang; Stephen H. Bryant
NCBIs Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBIs Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBIs Entrez system, and CDDs collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either ‘specific’ (identifying molecular function with high confidence) or as ‘non-specific’ (identifying superfamily membership only).
Nucleic Acids Research | 2007
John B. Anderson; Myra K. Derbyshire; Carol DeWeese-Scott; Noreen R. Gonzales; Marc Gwadz; Luning Hao; Siqian He; David I. Hurwitz; John D. Jackson; Zhaoxi Ke; Dmitri M. Krylov; Christopher J. Lanczycki; Cynthia A. Liebert; Chunlei Liu; Fu Lu; Shennan Lu; Gabriele H. Marchler; Mikhail Mullokandov; James S. Song; Narmada Thanki; Roxanne A. Yamashita; Jodie J. Yin; Dachuan Zhang; Stephen H. Bryant
The conserved domain database (CDD) is part of NCBIs Entrez database system and serves as a primary resource for the annotation of conserved domain footprints on protein sequences in Entrez. Entrezs global query interface can be accessed at and will search CDD and many other databases. Domain annotation for proteins in Entrez has been pre-computed and is readily available in the form of ‘Conserved Domain’ links. Novel protein sequences can be scanned against CDD using the CD-Search service; this service searches databases of CDD-derived profile models with protein sequence queries using BLAST heuristics, at . Protein query sequences submitted to NCBIs protein BLAST search service are scanned for conserved domain signatures by default. The CDD collection contains models imported from Pfam, SMART and COG, as well as domain models curated at NCBI. NCBI curated models are organized into hierarchies of domains related by common descent. Here we report on the status of the curation effort and present a novel helper application, CDTree, which enables users of the CDD resource to examine curated hierarchies. More importantly, CDD and CDTree used in concert, serve as a powerful tool in protein classification, as they allow users to analyze protein sequences in the context of domain family hierarchies.
Nucleic Acids Research | 2012
Chanjuan Zheng; Farideh Chitsaz; Myra K. Derbyshire; Lewis Y. Geer; Renata C. Geer; Noreen R. Gonzales; Marc Gwadz; David I. Hurwitz; Christopher J. Lanczycki; Fu Lu; Shennan Lu; Gabriele H. Marchler; James S. Song; Narmada Thanki; Roxanne A. Yamashita; Dachuan Zhang; Stephen H. Bryant
CDD, the Conserved Domain Database, is part of NCBI’s Entrez query and retrieval system and is also accessible via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. CDD provides annotation of protein sequences with the location of conserved domain footprints and functional sites inferred from these footprints. Pre-computed annotation is available via Entrez, and interactive search services accept single protein or nucleotide queries, as well as batch submissions of protein query sequences, utilizing RPS-BLAST to rapidly identify putative matches. CDD incorporates several protein domain and full-length protein model collections, and maintains an active curation effort that aims at providing fine grained classifications for major and well-characterized protein domain families, as supported by available protein three-dimensional (3D) structure and the published literature. To this date, the majority of protein 3D structures are represented by models tracked by CDD, and CDD curators are characterizing novel families that emerge from protein structure determination efforts.
Nucleic Acids Research | 2017
Yu Bo; Lianyi Han; Jane He; Christopher J. Lanczycki; Shennan Lu; Farideh Chitsaz; Myra K. Derbyshire; Renata C. Geer; Noreen R. Gonzales; Marc Gwadz; David I. Hurwitz; Fu Lu; Gabriele H. Marchler; James S. Song; Narmada Thanki; Zhouxi Wang; Roxanne A. Yamashita; Dachuan Zhang; Chanjuan Zheng; Lewis Y. Geer; Stephen H. Bryant
NCBIs Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBIs Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.
Database | 2012
Myra K. Derbyshire; Christopher J. Lanczycki; Stephen H. Bryant
The overwhelming fraction of proteins whose sequences have been collected in comprehensive databases may never be assessed for function experimentally. Commonly, putative function is assigned based on similarity to experimentally characterized homologs, either on the level of the entire protein or for single evolutionarily conserved domains. The annotation of individual sites provides more detailed insights regarding the correspondence between sequence and function, as well as context for the interpretation of sequence variation and the outcomes of experiments. In general, site annotation has to be extracted from the published literature, and can often be transferred to closely related sequence neighbors. The National Center for Biotechnology Informations Conserved Domain Database (CDD) provides a system for curators to record functional (such as active sites or binding sites for cofactors) or characteristic sites (such as signature motifs), which are conserved across domain families, and for the transfer of that annotation to protein database sequences via high-confidence domain matches. Recently, CDD curators have begun to sort-site annotations into seven categories (active, polypeptide binding, nucleic acid binding, ion binding, chemical binding, post-translational modification and other) and here we present a first comparative analysis of sites obtained via domain model matches, juxtaposed with existing site annotation encountered in high-quality data sets. Site annotation derived from domain annotation has the potential to cover large fractions of protein sequences, and we observe that CDD-based site annotation complements existing site annotation in many cases, which may, in part, originate from CDDs curation practice of collecting sites conserved across diverse taxa and supported by evidence from multiple 3D structures.
Nucleic Acids Research | 2018
Daniel H. Haft; Michael DiCuccio; Azat Badretdin; Vyacheslav Brover; Vyacheslav Chetvernin; Kathleen O’Neill; Wenjun Li; Farideh Chitsaz; Myra K. Derbyshire; Noreen R. Gonzales; Marc Gwadz; Fu Lu; Gabriele H. Marchler; James S. Song; Narmada Thanki; Roxanne A. Yamashita; Chanjuan Zheng; Françoise Thibaud-Nissen; Lewis Y. Geer; Kim D. Pruitt
Abstract The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) provides annotation for over 95 000 prokaryotic genomes that meet standards for sequence quality, completeness, and freedom from contamination. Genomes are annotated by a single Prokaryotic Genome Annotation Pipeline (PGAP) to provide users with a resource that is as consistent and accurate as possible. Notable recent changes include the development of a hierarchical evidence scheme, a new focus on curating annotation evidence sources, the addition and curation of protein profile hidden Markov models (HMMs), release of an updated pipeline (PGAP-4), and comprehensive re-annotation of RefSeq prokaryotic genomes. Antimicrobial resistance proteins have been reannotated comprehensively, improved structural annotation of insertion sequence transposases and selenoproteins is provided, curated complex domain architectures have given upgraded names to millions of multidomain proteins, and we introduce a new kind of annotation rule—BlastRules. Continual curation of supporting evidence, and propagation of improved names onto RefSeq proteins ensures that the functional annotation of genomes is kept current. An increasing share of our annotation now derives from HMMs and other sets of annotation rules that are portable by nature, and available for download and for reuse by other investigators. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.
Database | 2015
Myra K. Derbyshire; Noreen R. Gonzales; Shennan Lu; Jane He; Gabriele H. Marchler; Zhouxi Wang
When annotating protein sequences with the footprints of evolutionarily conserved domains, conservative score or E-value thresholds need to be applied for RPS-BLAST hits, to avoid many false positives. We notice that manual inspection and classification of hits gathered at a higher threshold can add a significant amount of valuable domain annotation. We report an automated algorithm that ‘rescues’ valuable borderline-scoring domain hits that are well-supported by domain architecture (DA, the sequential order of conserved domains in a protein query), including tandem repeats of domain hits reported at a more conservative threshold. This algorithm is now available as a selectable option on the public conserved domain search (CD-Search) pages. We also report on the possibility to ‘suppress’ domain hits close to the threshold based on a lack of well-supported DA and to implement this conservatively as an option in live conserved domain searches and for pre-computed results. Improving domain annotation consistency will in turn reduce the fraction of NR sequences with incomplete DAs. URL: http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
Cancer Research | 2010
James S. Song; Myra K. Derbyshire; Fu Lu; John D. Jackson; Roxanne A. Yamashita; Stephen H. Bryant
The NCBI9s Conserved Domain Database (CDD; http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), is a collection of annotated multiple sequence alignment models representing ancient conserved protein domains, basic units of protein function and protein evolution. Domain models are annotated with functional sites and can be viewed as sequence alignments together with corresponding 3D structure using the CDTree/Cn3D software applications. CDTree/Cn3D is a domain hierarchy editor which lets the user view and examine conserved domain hierarchies interactively and in great detail. A domain hierarchy is a structured collection of domain models reflecting the domain family9s molecular evolution. Here we present our current, functionally annotated evolutionary classifications of the nucleotide-binding domain, transmembrane domain, and periplasmic binding proteins of the ABC (ATP binding cassette)-type transport systems which are involved in the transport of a wide variety of substrates such as sugars, ions, peptides, and more complex organic molecules across membranes. Mutations in ABC transporters cause or contribute to multi-drug resistance, cystic fibrosis, and a range of other human diseases. Using CDTree/Cn3D functionality, subfamilies present in diverse organisms were inferred from the multiple sequence alignments, phylogenetic trees, and the domain architectures of the proteins involved. Furthermore subfamilies, some of which are only comprised of uncharacterized proteins, were annotated with molecular and cellular function and the location of conserved sites, as available in the literature and evident from protein 3D structure. We demonstrate the utility of CDTree/Cn3D in studying the molecular evolution of protein and domain families, and in accelerating the discovery of orthologous groups. CDTree/Cn3D are freely available for download via the CDD website. A version of CDTree, which supports both Mac OSX and Windows operating systems, has recently been made available. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 95.