Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myriam Beauchemin is active.

Publication


Featured researches published by Myriam Beauchemin.


Journal of Zhejiang University-science B | 2007

DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis

Claudie Paquet; Myriam Beauchemin; Richard Bertrand

Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and-signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.


Oncogene | 2007

Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint.

Myriam Beauchemin; Richard Bertrand

In response to cancer chemotherapeutic drugs, cells rapidly trigger the apoptotic program or undergo growth arrest and senescence at specific phases of the cell cycle. Mitochondrial bcl-xL plays a central role in preventing alteration of mitochondrial dysfunction, cytochrome c release, caspase activation, DNA fragmentation and apoptosis. However, its pleitropic function depends on its subcellular localization. Here, we show that in addition to its mitochondrial effect that delays apoptosis, bcl-xL colocalizes and binds to cdk1(cdc2) during G2/M cell-cycle checkpoint and its overexpression stabilizes a G2/M-arrest senescence program in surviving cells after DNA damage. Bcl-xL potently inhibits cdk1(cdc2) kinase activity, which is reversible by a synthetic peptide between the 41st amino acid and 60th amino acid surrounding of the Thr47 and Ser62 phosphorylation sites, and Asn52 deamidation site, within the flexible loop domain of bcl-xL. A mutant deleted of this region does not alter the antiapoptotic function of bcl-xL, but impedes its effect on cdk1(cdc2) activity and on the G2/M-arrest senescence program after DNA damage. The nuclear interaction of bcl-xL and cdk1(cdc2) suggests that bcl-xL is coupled to the stabilization of a cell-cycle checkpoint induced by DNA damage, and this effect is genetically distinct from its function on apoptosis.


Oncogene | 2004

Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation

Claudie Paquet; Myriam Beauchemin; Richard Bertrand

Bcl-2 family members either negatively or positively regulate the apoptotic threshold of cells. Bcl-xES (extra short), a novel Bcl-x member, possesses a unique combination of BH4 and BH2 domains as well as a COOH-terminal hydrophobic transmembrane anchor domain. Bcl-xES contains sequences of hydrophobic α-6 helices but lacks sequences of α-5 helices, suggesting that it does not have pore channel-forming activity but functions uniquely as a trapping protein. mRNA expression analysis by reverse transcriptase–polymerase chain reaction and RNase protection assay reveal that Bcl-xES is expressed in a variety of human cancer cell lines and human tumors, including bone marrow from patients with acute lymphoblastic leukemia. Bcl-xES expression is much less pronounced in some specimens of normal human tissues, including the breast, ovary, testis and lung. Stable, transfected human B lymphoma Namalwa variant cells expressing Bcl-xES were derived to investigate its role in apoptosis. Bcl-xES had a preventive effect on cell death induced by tumor necrosis factor-alpha and various concentrations of anticancer drugs, including camptothecin, etoposide and cisplatin. Its protective action on cell death was correlated with the inhibition of mitochondrial cytochrome c release and caspase activation. In a yeast two-hybrid system, Bcl-xES interacted with most Bcl-2 family members, including those containing only a BH3 domain, and with the Ced-4 homolog Apaf-1. Co-immunoprecipitation and gel filtration chromatography experiments suggest that Bcl-xES delays drug-induced apoptosis by disturbing the formation of Bax oligomers and preventing cytochrome c release, but also by interacting with Apaf-1 and inhibiting procaspase-9 activation, thus averting the apoptogenic proteolytic caspase cascade and cell death.


Molecular and Cellular Biology | 1992

Transcriptional activation of the CEF-4/9E3 cytokine gene by pp60v-src.

Mohammed Dehbi; Angélique Mbiguino; Myriam Beauchemin; Gilles Chatelain; Pierre André Bédard

The CEF-4/9E3 gene is expressed constitutively in Rous sarcoma virus (RSV)-transformed cells. This expression is largely determined by an increase in transcription of the gene. In this report, we characterize the regulatory elements responsible for the transformation-dependent activation of CEF-4/9E3. Three sequences corresponding to AP-1, PRD II/kappa B, and TAACGCAATT are involved in the process and therefore define the src-responsive unit (SRU) of the CEF-4 promoter. In constructs containing a deletion of the SRU, multiple copies of AP-1 or PRD II/kappa B, but not TAACGCAATT, led to activation of the promoter. Thus, factors interacting with these elements are constitutively activated in RSV-transformed chicken embryo fibroblasts. In agreement with the results of transient expression assays, protein binding to AP-1, PRD II/kappa B, and TAACGCAATT were more abundant in the nuclei of transformed cells. The expression of the CEF-4 promoter was investigated in cells infected by a temperature-sensitive mutant of RSV. No significant increase in CEF-4 promoter activity was detected early after activation of pp60v-src. In contrast, a substantial activation of the CEF-4 promoter was detected late after a temperature shift. Factors interacting with the TAACGCAATT, PRD II/kappa B, and AP-1 elements accumulated gradually over a period of several hours. Therefore, transcriptional activation plays an important role in the late, constitutive expression of the CEF-4 gene in stably transformed cells.


Apoptosis | 2004

Activation of multidomain and BH3-only pro-apoptotic Bcl-2 family members in p53-defective cells

Claudie Paquet; Myriam Beauchemin; Richard Bertrand

In the p53-deficient human B lymphoma Namalwa cell line that quickly undergoes apoptosis after DNA topoisomerase I inhibitor (camptothecin, CPT) treatment, we observed rapid and slight induction of the pro-apoptotic BH3-only Bik, Bim-EL, Bim-L and Bim-S proteins. In contrast, the expression levels of Bad and multidomain Bax-α and Bak remained mostly unchanged after CPT treatment. However, multiple pro-apoptotic proteins, including Bax-α, Bak, Bik, Bim-EL and Bim-L, translocated rapidly to the mitochondria after CPT treatment. Gel filtration chromatography experiments demonstrated that somes of the pro-apoptotic proteins assemble themselves into high molecular weight protein complexes. The protein composition of these oligomers was further analyzed by co-immunoprecipitation experiments performed on highly purified mitochondrial fractions, which revealed the formation of Bax/Bak, Bax/VDAC1, Bak/VDAC1, Bim/VDAC1 and Bim/Bcl-2 complexes after DNA damage induction. Thus, it appeared that induction, mitochondrial translocation and assembly in multimeric protein complexes of several pro-apoptotic members of the Bcl-2 family correlated with the rapid activation of apoptosis in a p53-independent pathway after CPT-mediated DNA strand breaks.


Cell Cycle | 2012

Phospho-Bcl-xL(Ser62) plays a key role at DNA damage-induced G2 checkpoint

Jianfang Wang; Myriam Beauchemin; Richard Bertrand

Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.


Journal of Proteomics | 2009

Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human U-937 cells.

Nicolas Parent; Eric Winstall; Myriam Beauchemin; Claudie Paquet; Guy G. Poirier; Richard Bertrand

A lysosomal pathway, characterized by partial rupture or labilization of lysosomal membranes and cathepsin activation, is evoked during camptothecin-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. In this study, comparative and quantitative proteome analyses were performed to identify early changes in lysosomal protein expression/localization from U-937 cells undergoing apoptosis. In 2 independent experiments, among a total of more than 538 proteins putatively identified and quantitated by iTRAQ isobaric labeling and LC-ESI-MS/MS, 18 proteins were found to be upregulated and 9 downregulated in lysosomes purified from early apoptotic compared to control cells. Protein expression was validated by Western blotting on enriched lysosome fractions, and protein localization confirmed by fluorescence confocal microscopy of representative protein candidates, whose functions are associated with lysosomal membrane fluidity and dynamics. These include sterol-4-alpha-carboxylate 3-dehydrogenase (NSDHL), prosaposin (PSAP) and protein kinase C delta (PKC-delta). This comparative proteome analysis provides the basis for novel hypothesis and rationale functional experimentation, where the 3 validated candidate proteins are associated with lysosomal membrane fluidity and dynamics, particularly cholesterol, sphingolipid and glycosphingolipid metabolism.


Gene | 1995

Cloning and characterization of the human 5,10-methenyltetrahydrofolate synthetase-encoding cDNA

Alain Dayan; Richard Bertrand; Myriam Beauchemin; Dounia Chahla; Aline Mamo; Mario C. Filion; Daniel Skup; Bernard Massie; Jacques Jolivet

Methenyltetrahydrofolate synthetase (MTHFS) catalyses the obligatory initial metabolic step in the intracellular conversion of 5-formyltetrahydrofolate to other reduced folates. We have isolated and sequenced a human MTHFS cDNA which is 872-bp long and codes for a 203-amino-acid protein of 23,229 Da. Escherichia coli BL21(DE3), transfected with pET11c plasmids containing an open reading frame encoding MTHFS, showed a 100-fold increase in MTHFS activity in bacterial extracts after IPTG induction. Northern blot studies of human tissues determined that the MTHFS mRNA was expressed preferentially in the liver and Southern blot analysis of human genomic DNA suggested the presence of a single-copy gene.


Cellular Signalling | 2011

Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints

Jianfang Wang; Myriam Beauchemin; Richard Bertrand

Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.


Biochimica et Biophysica Acta | 1995

Identification and characterization of human mitochondrial methenyltetrahydrofolate synthetase activity

Richard Bertrand; Myriam Beauchemin; Alain Dayan; Manon Ouimet; Jacques Jolivet

We present evidence for the presence of the folate metabolism enzyme methenyltetrahydrofolate synthetase (MTHFS) in mitochondria. MTHFS activity was identified in the matrix of mitochondria purified from human liver biopsies. Mitochondrial and cytoplasmic MTHFS specific activities are similar, 85% of the total cellular MTHFS activity is in the cytoplasm and both native enzymes have similar molecular weights (approximately 25 kDa). Studies using purified mitochondrial MTHFS from CA46 human Burkitt lymphoma cells reveal that mitochondrial MTHFS behaves kinetically like the cytoplasmic enzyme with Km values of 4.7, 0.8 and 22 microM respectively for (6R,S)-5-formyltetrahydrofolate monoglutamate, (6S)-5-formyltetrahydrofolate pentaglutamate and ATP. This finding adds to previous observations that various folate-dependent enzymes reside in the mitochondria of eucaryotic cells. Intracellular tetrahydrofolate metabolism is highly compartmentalized and mitochondrial MTHFS activity is necessary for the entry of mitochondrial 5-formyltetrahydrofolate into the mitochondrial folate pool.

Collaboration


Dive into the Myriam Beauchemin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudie Paquet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Jacques Jolivet

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alain Dayan

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Jianfang Wang

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Massie

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eric Solary

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge