Myriam Bernaudin
University of Caen Lower Normandy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myriam Bernaudin.
Journal of Cerebral Blood Flow and Metabolism | 1999
Myriam Bernaudin; Hugo H. Marti; Simon Roussel; Didier Divoux; André Nouvelot; Eric T. MacKenzie; Edwige Petit
The present study describes, for the first time, a temporal and spatial cellular expression of erythropoietin (Epo) and Epo receptor (Epo-R) with the evolution of a cerebral infarct after focal permanent ischemia in mice. In addition to a basal expression of Epo in neurons and astrocytes, a postischemic Epo expression has been localized specifically to endothelial cells (1 day), microglia/macrophage-like cells (3 days), and reactive astrocytes (7 days after occlusion). Under these conditions, the Epo-R expression always precedes that of Epo for each cell type. These results support the hypothesis that there is a continuous formation of Epo, with its corresponding receptor, during the active evolution of a focal cerebral infarct and that the Epo/Epo-R system might be implicated in the processes of neuroprotection and restructuring (such as angiogenesis and gliosis) after ischemia. To support this hypothesis, a significant reduction in infarct volume (47%; P < 0.0002) was found in mice treated with recombinant Epo 24 hours before induction of cerebral ischemia. Based on the above, we propose that the Epo/Epo-R system is an endogenous mechanism that protects the brain against damages consequent to a reduction in blood flow, a mechanism that can be amplified by the intracerebroventricular application of exogenous recombinant Epo.
American Journal of Pathology | 2000
Hugo H. Marti; Myriam Bernaudin; Anita Bellail; Heike Schoch; Monika Euler; Edwige Petit; Werner Risau
We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke.
Nature Reviews Neuroscience | 2004
Frank R. Sharp; Myriam Bernaudin
Of all the chemical elements, oxygen is the most vital to the human body. The brain is the most sensitive organ to oxygen deprivation (hypoxia), which, over an extended period, can cause coma, seizures, cognitive impairment and other neurological disabilities, and even brain death. However, during mild hypoxia of short duration, the brain develops adaptative mechanisms that allow it to maintain normal physiological conditions. In this review, we discuss some of the molecular mechanisms of oxygen sensing in the brain. Particular emphasis is placed on the oxygen-dependant regulation of the transcription factor HIF1 (hypoxia-inducible factor 1) — one of the main cellular responses to hypoxia that operates in numerous cell types.
Journal of Biological Chemistry | 2002
Myriam Bernaudin; Yang Tang; Melinda Reilly; Edwige Petit; Frank R. Sharp
Hypoxic preconditioning (8% O2, 3 h) produces tolerance 24 h after hypoxic-ischemic brain injury in neonatal rats. To better understand the ischemic tolerance mechanisms induced by hypoxia, we used oligonucleotide microarrays to examine genomic responses in neonatal rat brain following 3 h of hypoxia (8% O2) and either 0, 6, 18, or 24 h of re-oxygenation. The results showed that hypoxia-inducible factor (HIF)-1- but not HIF-2-mediated gene expression may be involved in brain hypoxia-induced tolerance. Among the genes regulated by hypoxia, 12 genes were confirmed by real time reverse transcriptase-PCR as follows: VEGF,EPO, GLUT-1, adrenomedullin,propyl 4-hydroxylase α, MT-1,MKP-1, CELF, 12-lipoxygenase,t-PA, CAR-1, and an expressed sequence tag. Some genes, for example GLUT-1, MT-1,CELF, MKP-1, and t-PA did not show any hypoxic regulation in either astrocytes or neurons, suggesting that other cells are responsible for the up-regulation of these genes in the hypoxic brain. These genes were expressed in normal and hypoxic brain, heart, kidney, liver, and lung, with adrenomedullin,MT-1, and VEGF being prominently induced in brain by hypoxia. These results suggest that a number of endogenous molecular mechanisms may explain how hypoxic preconditioning protects against subsequent ischemia, and may provide novel therapeutic targets for treatment of cerebral ischemia.
Neurorx | 2004
Frank R. Sharp; Ruiqiong Ran; Aigang Lu; Yang Tang; Kenneth I. Strauss; Todd F. Glass; Tim Ardizzone; Myriam Bernaudin
SummaryAnimals exposed to brief periods of moderate hypoxia (8% to 10% oxygen for 3 hours) are protected against cerebral and cardiac ischemia between 1 and 2 days later. This hypoxia preconditioning requires new RNA and protein synthesis. The mechanism of this hypoxia-induced tolerance correlates with the induction of the hypoxia-inducible factor (HIF), a transcription factor heterodimeric complex composed of inducible HIF-1α and constitutive HIF-1β proteins that bind to the hypoxia response elements in a number of HIF target genes. Our recent studies show that HIF-1α correlates with hypoxia induced tolerance in neonatal rat brain. HIF target genes, also induced following hypoxia-induced tolerance, include vascular endothelial growth factor, erythropoietin, glucose transporters, glycolytic enzymes, and many other genes. Some or all of these genes may contribute to hypoxia-induced protection against ischemia. HIF induction of the glycolytic enzymes accounts in part for the Pasteur effect in brain and other tissues. Hypoxia-induced tolerance is not likely to be equivalent to treatment with a single HIF target gene protein since other transcription factors including Egr-1 (NGFI-A) have been implicated in hypoxia regulation of gene expression. Understanding the mechanisms and genes involved in hypoxic tolerance may provide new therapeutic targets to treat ischemic injury and enhance recovery.
Nature Protocols | 2009
Valentine Bouet; Michel Boulouard; Jérôme Toutain; Didier Divoux; Myriam Bernaudin; Pascale Schumann-Bard; Thomas Freret
Long-term functional deficits after a brain injury are difficult to assess in the mouse. If no deficit is observed, researchers could conclude either that the animal has fully recovered or that the tests they used were not appropriate or sensitive enough to the modality of the deficits. We present here a detailed protocol describing how to conduct an adhesive removal test for this species. It consists of applying adhesive tape on each forepaw of the animal and measuring the time-to-contact and the time-to-remove them. This behavior implies correct paw and mouth sensitivity (time-to-contact) and correct dexterity (time-to-remove). To decrease interindividual differences, we recommend a training session (1 week, 1 trial per day) before surgical procedures so that mice to reach optimal performances.
Journal of Cerebral Blood Flow and Metabolism | 2005
Samuel Valable; Joan Montaner; Anita Bellail; Vincent Berezowski; Julien Brillault; Roméo Cecchelli; Didier Divoux; Eric T. MacKenzie; Myriam Bernaudin; Simon Roussel; Edwige Petit
After cerebral ischemia, angiogenesis, by supplying for the deficient perfusion, may be a beneficial process for limiting neuronal death and promoting tissue repair. In this study, we showed that the combination of Ang-1 and vascular endothelial growth factor (VEGF) provides a more adapted therapeutic strategy than the use of VEGF alone. Indeed, we showed on a focal ischemia model that an early administration of VEGF exacerbates ischemic damage, because of its effects on blood—brain barrier (BBB) permeability. In contrast, a coapplication of Ang-1 and VEGF leads to a significant reduction of the ischemic and edema volumes by 50% and 42%, respectively, in comparison with VEGF-treated mice. We proposed that Ang-1 blocks the BBB permeability effect of VEGF in association with a modulation of matrix metalloproteinase (MMP) activity. Indeed, we showed on both ischemic in vivo and BBB in vitro models that VEGF enhances BBB damage and MMP-9 activity and that Ang-1 counteracts both effects. However, we also showed a synergic angiogenic effect of Ang-1 and VEGF in the brain. Taken together, these results allow to propose that, in cerebral ischemia, the combination of Ang-1 and VEGF could be used early to promote the formation of mature neovessels without inducing side effects on BBB permeability.
Developmental Neuroscience | 2005
Ruiqiong Ran; Huichun Xu; Aigang Lu; Myriam Bernaudin; Frank R. Sharp
Exposure to moderate hypoxia alone does not cause neuronal death as long as blood pressure and cerebral blood flow are maintained in mammals. In neonatal and adult mammals including rats and mice, carotid occlusion in combination with hypoxia produces neuronal death and brain infarction. However, preexposure to 8% oxygen for 3 h protects the brain and likely other organs of neonatal and adult rats against combined hypoxia-ischemia 24 h later. In this paper, the possible mechanisms of this so-called hypoxia-induced tolerance to ischemia is discussed. One mechanism likely involves hypoxia-inducible factor-1α (HIF-1α). HIF-1α is a transcription factor that – during hypoxia – binds with a second protein (HIF-1β) in the nucleus to promoter elements in hypoxia-responsive target genes. This causes upregulation of HIF target genes including VEGF, erythropoietin, iNOS, glucose transporter-1, glycolytic enzymes, and many other genes to protect the brain against ischemia 24 h later. In addition, non-HIF pathways including MTF-1, Egr-1 and others act directly or indirectly on other target genes to also promote hypoxia-induced preconditioning. Hypoxia preconditioning can be mimicked by iron chelators like desferrioxamine and transition metals like cobalt chloride that inhibit prolyl hydroxylases, increase HIF-1α levels in the brain, and produce protection of the brain against combined hypoxia-ischemia 24 h later. This hypoxia preconditioning has potential clinical usefulness in protecting high-risk newborns or to provide protection prior to surgery.
Neurobiology of Disease | 2006
Yang Tang; Emilie Pacary; Thomas Freret; Didier Divoux; Edwige Petit; Pascale Schumann-Bard; Myriam Bernaudin
The aim of the present study is to better understand oxygen-sensitive adaptative pathways underlying the hypoxic preconditioning-induced protection of the brain against ischemia. Using oligonucleotide microarrays, we examined the brain genomic response of adult mice following hypoxia preconditioning (8% O2 for 1 or 6 h of hypoxia with reoxygenation 12, 18, 24 h or 72 h) and ischemia (6 h), preceeded (tolerant state) or not, by preconditioning. Real-time PCR was used to validate the results. Most gene expression increases occurred during hypoxia, including those of HIF-1-dependent genes (RTP801, AM, VEGF, p21, GLUT-1), early response genes (IER3) and transcriptional factors (ATF3, C/EBPdelta). A second wave of changes occurred 24 h after reoxygenation (S100A5, TH, Calretinin, PBX3). A third one occurred during ischemia itself, revealing that hypoxic preconditioning modifies the brain genomic response to ischemia. In addition, we show that some identical genes are overexpressed by hypoxia in both neonatal and adult brains (VEGF, EPO, GLUT-1, AM, MTs, C/EBPdelta).
Experimental Neurology | 2000
Johan Van Beek; Myriam Bernaudin; Edwige Petit; Philippe Gasque; André Nouvelot; Eric T. MacKenzie; Marc Fontaine
In the present study, we have examined the expression of anaphylatoxin C3a and C5a receptors (C3aR and C5aR) at the mRNA and protein levels in ischemic brain tissues following permanent middle cerebral artery (MCA) occlusion in the mouse. C3aR and C5aR mRNAs were both detected by semiquantitative reverse transcription and polymerase chain reaction (RT-PCR) and the cellular distribution of each receptor was analyzed by immunohistochemistry. Significant increases in the expression of C3aR and C5aR mRNAs in the ischemic cortex were observed; the expression of both reached a peak at 2 days after MCA occlusion (4.3- and 3.4-fold increases, respectively, compared with nonoperated control cortical samples; P < 0.00625 with Bonferronis correction, n = 3). C3aR and C5aR stainings were found constitutively on neurons and astrocytes. In ischemic tissues, we observed that C3aR and C5aR were expressed de novo on endothelial cells of blood vessels, at 6 h and 2 days after MCA occlusion, respectively. C3aR and C5aR immunostaining was increased in macrophage-like cells and reactive astrocytes 7 days postocclusion. C3a and C5a may play an important role in promoting inflammatory and/or repair processes in the ischemic brain by regulating glial cell activation and chemotaxis.