Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myriam Cotten is active.

Publication


Featured researches published by Myriam Cotten.


Biophysical Journal | 1998

Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.

David D. Busath; Craig D. Thulin; Richard W. Hendershot; L. Revell Phillips; Peter J. Maughan; Chad D. Cole; Nathan C. Bingham; Sara E. Morrison; Lissa C. Baird; Reed J. Hendershot; Myriam Cotten; Timothy A. Cross

Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends.


Journal of the American Chemical Society | 2014

High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion.

B. Scott Perrin; Ye Tian; Riqiang Fu; Christopher V. Grant; Eduard Y. Chekmenev; William E. Wieczorek; Alexander E. Dao; Robert M. Hayden; Caitlin M. Burzynski; Richard M. Venable; Mukesh Sharma; Stanley J. Opella; Richard W. Pastor; Myriam Cotten

While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of 1H–15N dipolar couplings and 15N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (∼25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Å more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ∼1.2–3.6 Å below the plane defined by the C2 atoms of the lipid acyl chains.


Biophysical Journal | 1999

Solid-State NMR and Hydrogen-Deuterium Exchange in a Bilayer-Solubilized Peptide: Structural and Mechanistic Implications

Myriam Cotten; Riqiang Fu; Timothy A. Cross

Hydrogen-deuterium exchange has been monitored by solid-state NMR to investigate the structure of gramicidin M in a lipid bilayer and to investigate the mechanisms for polypeptide insertion into a lipid bilayer. Through exchange it is possible to observe 15N-2H dipolar interactions in oriented samples that yield precise structural constraints. In separate experiments the pulse sequence SFAM was used to measure dipolar distances in this structure, showing that the dimer is antiparallel. The combined use of orientational and distance constraints is shown to be a powerful structural approach. By monitoring the hydrogen-deuterium exchange at different stages in the insertion of peptides into a bilayer environment it is shown that dimeric gramicidin is inserted into the bilayer intact, i.e., without separating into monomer units. The exchange mechanism is investigated for various sites and support for a relayed imidic acid mechanism is presented. Both acid and base catalyzed mechanisms may be operable. The nonexchangeable sites clearly define a central core to which water is inaccessible or hydroxide or hydronium ion is not even momentarily stable. This provides strong evidence that this is a nonconducting state.


Biophysical Journal | 1999

Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin.

L. Revell Phillips; Chad D. Cole; Reed J. Hendershot; Myriam Cotten; Timothy A. Cross; David D. Busath

Proton transport on water wires, of interest for many problems in membrane biology, is analyzed in side-chain analogs of gramicidin A channels. In symmetrical 0.1N HCl solutions, fluorination of channel Trp(11), Trp-(13), or Trp(15) side chains is found to inhibit proton transport, and replacement of one or more Trps with Phe enhances proton transport, the opposite of the effects on K(+) transport in lecithin bilayers. The current-voltage relations are superlinear, indicating that some membrane field-dependent process is rate limiting. The interfacial dipole effects are usually assumed to affect the rate of cation translocation across the channel. For proton conductance, however, water reorientation after proton translocation is anticipated to be rate limiting. We propose that the findings reported here are most readily interpreted as the result of dipole-dipole interactions between channel waters and polar side chains or lipid headgroups. In particular, if reorientation of the water column begins with the water nearest the channel exit, this hypothesis explains the negative impact of fluorination and the positive impact of headgroup dipole on proton conductance.


Biophysical Journal | 1997

Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.

Myriam Cotten; F. Xu; Timothy A. Cross

The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramicidin A, is not compatible with ion conductance. Gramicidin A/gramicidin M hybrid structures have also been prepared, and like gramicidin M homodimers, these dimeric hybrids appear to have a double-helical fold, suggesting that a couple of indoles are being buried in the bilayer interstices. To achieve this equilibrium structure (i.e., minimum energy conformation), incubation at 68 degrees C for 2 days is required. Kinetically trapped metastable structures may be more common in lipid bilayers than in an aqueous isotropic environment. Structural characterizations in the bilayers were achieved with solid-state NMR-derived orientational constraints from uniformly aligned lipid bilayer samples, and characterizations in organic solvents were accomplished by solution NMR.


Biophysical Journal | 2001

Noncontact Dipole Effects on Channel Permeation. IV. Kinetic Model of 5F-Trp 13 Gramicidin A Currents

Nephi Thompson; Gina Thompson; Chad D. Cole; Myriam Cotten; Timothy A. Cross; David D. Busath

Nonlinear least squares fitting was used to assign rate constants for the three-barrier, two-site, double-occupancy, single-filing kinetic model for previously reported current-voltage relations of (5F-Indole)Trp(13) gramicidin A and gramicidin A channels (, 75:2830-2844). By judicious coupling of parameters, it was possible to reduce the parameter space from 64 parameters to 24, and a reasonable fit consistent with other experimental data was obtained. The main features of the fit were that fluorination increased the rate constant for translocation by a factor of 2.33, consistent with a free energy change in the translocation barrier of -0.50 kcal/mol, and increased first-ion binding affinity by a factor of 1.13, primarily by decreasing the first-ion exit rate constant. The translocation rate constant was 5.62 times slower in diphytanoyl phosphatidylcholine (DPhPC) bilayers than in monoolein (GMO) bilayers (coupled for the four combinations of peptide and salt), suggesting a 44.2-mV difference in the projection of the interfacial dipole into the channel. Thus fluorination caused increased currents in DPhPC bilayers, where a high interfacial dipole potential makes translocation more rate limiting because the translocation barrier was reduced, and decreased currents in GMO bilayers, where ion exit or entry is rate limiting because these barriers were increased.


Biophysical Journal | 2011

Amphipathic Antimicrobial Piscidin in Magnetically Aligned Lipid Bilayers

Anna A. De Angelis; Christopher V. Grant; Matthew K. Baxter; Jason A. McGavin; Stanley J. Opella; Myriam Cotten

The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. (31)P NMR and double-resonance (1)H/(15)N NMR experiments performed between 25 °C and 61 °C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61 °C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.


Biophysical Journal | 2002

Noncontact Dipole Effects on Channel Permeation. VI. 5F- and 6F-Trp Gramicidin Channel Currents

Chad D. Cole; Adam Frost; Nephi Thompson; Myriam Cotten; Timothy A. Cross; David D. Busath

Fluorination of peptide side chains has been shown to perturb gramicidin channel conductance without significantly changing the average side chain structure, which, it is hoped, will allow detailed analysis of electrostatic modulation of current flow. Here we report a 1312-point potassium current-voltage-concentration data set for homodimeric channels formed from gramicidin A (gA) or any of eight fluorinated Trp analogs in both lecithin and monoglyceride bilayers. We fit the data with a three-barrier, two-site, two-ion (3B2S) kinetic model. The fluorination-induced changes in the rate constants were constrained by the same factor in both lipids. The rate constant changes were converted to transition-state free-energy differences for comparison with previous electrostatic potential energy differences based on an ab initio force field. The model allowed a reasonably good fit (chi = 8.29 with 1271 degrees of freedom). The measured changes were subtle. Nevertheless, the fitted energy perturbations agree well with electrostatic predictions for five of the eight peptides. For the other three analogs, the fitted changes suggested a reduced translocation barrier rather than the reduced exit barrier as predicted by electrostatics.


The Journal of Membrane Biology | 2015

The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length

Bradley S. Perrin; Alexander J. Sodt; Myriam Cotten; Richard W. Pastor

The initial steps of membrane disruption by antimicrobial peptides (AMPs) involve binding to bacterial membranes in a surface-bound (S) orientation. To evaluate the effects of lipid composition on the S state, molecular dynamics simulations of the AMPs piscidin 1 (p1) and piscidin 3 (p3) were carried out in four different bilayers: 3:1 DMPC/DMPG, 3:1 POPC/POPG, 1:1 POPE/POPG, and 4:1 POPC/cholesterol. In all cases, the addition of 1:40 piscidin caused thinning of the bilayer, though thinning was least for DMPC/DMPG. The peptides also insert most deeply into DMPC/DMPG, spanning the region from the bilayer midplane to the headgroups, and thereby only mildly disrupting the acyl chains. In contrast, the peptides insert less deeply in the palmitoyl-oleoyl containing membranes, do not reach the midplane, and substantially disrupt the chains, i.e., the neighboring acyl chains bend under the peptide, forming a basket-like conformation. Curvature free energy derivatives calculated from the simulation pressure profiles reveal that the peptides generate positive curvature in membranes with palmitoyl and oleoyl chains but negative curvature in those with myristoyl chains. Curvature inductions predicted with a continuum elastic model follow the same trends, though the effect is weaker, and a small negative curvature induction is obtained in POPC/POPG. These results do not directly speak to the relative stability of the inserted (I) states or ease of pore formation, which requires the free energy pathway between the S and I states. Nevertheless, they do highlight the importance of lipid composition and acyl chain packing.


Biochimica et Biophysica Acta | 2010

Can antimicrobial peptides scavenge around a cell in less than a second

Eduard Y. Chekmenev; Breanna S. Vollmar; Myriam Cotten

Antimicrobial peptides, which play multiple host-defense roles, have garnered increased experimental focus because of their potential applications in the pharmaceutical and food production industries. While their mechanisms of action are richly debated, models that have been advanced share modes of peptide-lipid interactions that require peptide dynamics. Before the highly cooperative and specific events suggested in these models take place, peptides must undergo an important process of migration along the membrane surface and delivery from their site of binding on the membrane to the actual site of functional performance. This phenomenon, which contributes significantly to antimicrobial function, is poorly understood, largely due to a lack of experimental and computational tools needed to assess it. Here, we use (15)N solid-state nuclear magnetic resonance to obtain molecular level data on the motions of piscidins amphipathic helices on the surface of phospholipid bilayers. The studies presented here may help contribute to a better understanding of the speed at which the events that lead to antimicrobial response take place. Specifically, from the perspective of the kinetics of cellular processes, we discuss the possibility that piscidins and perhaps many other amphipathic antimicrobial peptides active on the membrane surface may represent a class of fast scavengers rather than static polypeptides attached to the water-lipid interface.

Collaboration


Dive into the Myriam Cotten's collaboration.

Top Co-Authors

Avatar

Riqiang Fu

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Pastor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Scott Perrin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chad D. Cole

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge