Myriam Laprise-Pelletier
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myriam Laprise-Pelletier.
Biomacromolecules | 2014
Nicky Chan; Myriam Laprise-Pelletier; Pascale Chevallier; Andrea Bianchi; Marc-André Fortin; Jung Kwon Oh
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with diameters <5 nm hold great promise as T1-positive contrast agents for in vivo magnetic resonance imaging. However, control of the surface chemistry of USPIOs to ensure individual colloidal USPIOs with a ligand monolayer and to impart biocompatibility and enhanced colloidal stability is essential for successful clinical applications. Herein, an effective and versatile strategy enabling the development of aqueous colloidal USPIOs stabilized with well-defined multidentate block copolymers (MDBCs) is reported. The multifunctional MDBCs are designed to consist of an anchoring block possessing pendant carboxylates as multidentate anchoring groups strongly bound to USPIO surfaces and a hydrophilic block having pendant hydrophilic oligo(ethylene oxide) chains to confer water dispersibility and biocompatibility. The surface of USPIOs is saturated with multiple anchoring groups of MDBCs, thus exhibiting excellent long-term colloidal stability as well as enhanced colloidal stability at biologically relevant electrolyte, pH, and temperature conditions. Furthermore, relaxometric properties as well as in vitro and in vivo MR imaging results demonstrate that the MDBC-stabilized USPIO colloids hold great potential as an effective T1 contrast agent.
Journal of Materials Chemistry B | 2015
Myriam Laprise-Pelletier; Meryem Bouchoucha; Jean Lagueux; Pascale Chevallier; Roger Lecomte; Yves Gossuin; Freddy Kleitz; Marc-André Fortin
Mesoporous silica nanoparticles (MSNs) are being developed as drug delivery vectors. Biomedical imaging (MRI and PET) enables their tracking in vivo, provided their surface is adequately grafted with imaging probes (metal chelates). However, MSNs are characterized by huge specific surfaces, and high-quality metal chelate anchoring procedures must be developed and validated, to demonstrate that their detection in vivo is associated to the presence of nanoparticles and not to detached metal chelates. MCM-48 nanospheres (M48SNs, 150 nm diam., 3-D pore geometry) were synthesized and functionalized with diethylenetriaminepentaacetic acid (DTPA). The strong grafting of DTPA was confirmed by 29Si MAS-NMR, XPS, FTIR and TGA. The particles were labeled with paramagnetic ions Gd3+ (for MRI) as well as radioactive ions 64Cu2+ (for PET; half-life: 12.7 h). Gd3+-DTPA-M48SNs formed a stable colloid in saline media for at least 6 months, without any sign of aggregation. The relaxometric properties were measured at various magnetic fields. The strength of DTPA binding at the surface of MSNs was also assessed in vivo, by injecting mice (i.v.) with Gd3+/64Cu2+-DTPA-M48SNs. Vascular retention and urinary clearance were monitored by MRI, whereas the PET modality provided dynamic and quantitative assessment of biodistribution and blood/organ clearance. No significant 64Cu activity was detectable in the bladder. The study confirmed the very limited detachment of DTPA from M48SNs cores once injected in vivo. The transit of MSNs through the liver and intestinal tract, does not lead to evidence of Gd3+/64Cu2+-DTPA in the urine. This physico-chemical and biodistribution study confirms the quality of DTPA attachment at the surface of the particles, necessary to allow further development of PET/MRI-assisted MSN-vectorized drug delivery procedures.
Langmuir | 2015
Mathieu Bouchard; Mathieu Létourneau; Christian Sarra-Bournet; Myriam Laprise-Pelletier; Stéphane Turgeon; Pascale Chevallier; Jean Lagueux; Gaétan Laroche; Marc-A. Fortin
Progresses in cold atmospheric plasma technologies have made possible the synthesis of nanoparticles in aqueous solutions using plasma electrochemistry principles. In this contribution, a reactor based on microhollow cathodes and operating at atmospheric pressure was developed to synthesize iron-based nanoclusters (nanoparticles). Argon plasma discharges are generated at the tip of the microhollow cathodes, which are placed near the surface of an aqueous solution containing iron salts (FeCl2 and FeCl3) and surfactants (biocompatible dextran). Upon reaction at the plasma-liquid interface, reduction processes occur and lead to the nucleation of ultrasmall iron-based nanoclusters (IONCs). The purified IONCs were investigated by XPS and FTIR, which confirmed that the nucleated clusters contain a highly hydrated form of iron oxide, close to the stoichiometric constituents of α-FeOOH (goethite) or Fe5O3(OH)9 (ferrihydrite). Relaxivity values of r1 = 0.40 mM(-1) s(-1) and r2/r1 = 1.35 were measured (at 1.41 T); these are intermediate values between the relaxometric properties of superparamagnetic iron oxide nanoparticles used in medicine (USPIO) and those of ferritin, an endogenous contrast agent. Plasma-synthesized IONCs were injected into the mouse model and provided positive vascular signal enhancement in T1-w. MRI for a period of 10-20 min. Indications of rapid and strong elimination through the urinary and gastrointestinal tracts were also found. This study is the first to report on the development of a compact reactor suitable for the synthesis of MRI iron-based contrast media solutions, on site and upon demand.
Advanced Healthcare Materials | 2017
Myriam Laprise-Pelletier; Jean Lagueux; Marie-France Côté; Thomas LaGrange; Marc-André Fortin
Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts. In this study, the authors report on intratumoral injections of radioactive gold nanoparticles (Au NPs) as an alternative to seeds. The particles (103 Pd:Pd@Au-PEG and 103 Pd:Pd@198 Au:Au-PEG; 10-14 nm Pd@Au core, 36-48 nm hydrodynamic diameter) are synthesized by a one-pot process and characterized by electron microscopy. Administrated as low volume (2-4 µL) single doses (1.6-1.7 mCi), the particles are strongly retained in PCa xenograft tumors, impacting on their growth rate. After 4 weeks, a tumor volume inhibition of 56% and of 75%, compared to the controls, is observed for 103 Pd:Pd@Au-PEG NPs and 103 Pd:Pd@198 Au:Au-PEG NPs, respectively. Skin necrosis is observed with 198 Au; therefore, Au NPs labeled with 103 Pd only are a more advisable choice. Overall, this is the first study confirming the impact of 103 Pd@Au NPs on tumor growth. This new brachytherapy procedure could allow tunable doses of radioactivity, administered with smaller needles than with the current technologies, and leading to fewer image artifacts.
Sensors | 2016
Adnane Kara; Camille Rouillard; Jessy Mathault; Martin Boisvert; Frederic Tessier; Hamza Landari; Imene Melki; Myriam Laprise-Pelletier; Élodie Boisselier; Marc-André Fortin; Eric Boilard; Jesse Greener; Amine Miled
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μM was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.
Journal of Materials Chemistry B | 2015
Diane Djoumessi; Myriam Laprise-Pelletier; Pascale Chevallier; Jean Lagueux; Marie-France Côté; Marc-André Fortin
The radioisotope palladium (103Pd), encapsulated in millimetre-size seed implants, is widely used in prostate cancer brachytherapy. Gold nanoparticles (Au NPs) distributed in the vicinity of 103Pd radioactive implants, strongly enhance the therapeutic dose of radioactive implants (radiosensitisation effect). A new strategy under development to replace millimetre-size implants, consist in injecting radioactive NPs in the affected tissues. The development of 103Pd@Au NPs distributed in the diseased tissue, could increase the uniformity of treatment (compared with massive seeds), while enhancing the radiotherapeutic dose to the cancer cells (through Au-mediated radiosensitisation effect). To achieve this goal, it is necessary to develop a rapid, efficient, one-pot and easy-to-automatise procedure, allowing the synthesis of core-shell Pd@Au NPs. The novel synthesis route proposed here enables the production of Pd@Au NPs in not more than 4 h, in aqueous media, with minimal manipulations, and relying on biocompatible and non-toxic molecules. This rapid multi-step process consists of the preparation of ultra-small Pd NPs by chemical reduction of an aqueous solution of H2PdCl4 supplemented with ascorbic acid (AA) as reducing agent and 2,3-meso-dimercaptosuccinic acid (DMSA) as a capping agent. Pd conversion yields close to 87% were found, indicating the efficiency of the reaction process. Then Pd NPs were used as seeds for the growth of a gold shell (Pd@Au), followed by grafting with polyethylene glycol (PEG) to ensure colloidal stability. Pd@Au-PEG (TEM: 20.2 ± 12.1 nm) formed very stable colloids in saline solution as well as in cell culture medium. The physico-chemical properties of the particles were characterised by FTIR, XPS, and UV-vis. spectroscopies. The viability of PC3 human prostate cancer cells was not affected after a 24 h incubation cycle with Pd@Au-PEG NPs to concentrations up to 4.22 mM Au. Finally, suspensions of Pd@Au-PEG NPs measured in computed tomography (CT) are found to attenuate X-rays more efficiently than commercial Au NPs CT contrast media. A proof-of-concept was performed to demonstrate the possibility synthesise radioactive 103Pd:Pd@Au-PEG NPs. This study reveals the possibility to synthesise Pd@Au NPs rapidly (including radioactive 103Pd:Pd@Au-PEG NPs), and following a methodology that respects all the strict requirements underlying the production of NPs for radiotherapeutic use (rapidity, reaction yield, colloidal stability, NPs concentration, purification).
ACS Nano | 2018
Myriam Laprise-Pelletier; Yunzhi Ma; Jean Lagueux; Marie-France Côté; Luc Beaulieu; Marc-André Fortin
Gold nanoparticles (Au NPs) distributed in the vicinity of low-dose rate (LDR) brachytherapy seeds could multiply their efficacy thanks to the secondary emissions induced by the photoelectric effect. Injections of radioactive LDR gold nanoparticles (LDR Au NPs), instead of conventional millimeter-size radioactive seeds surrounded by Au NPs, could further enhance the dose by distributing the radioactivity more precisely and homogeneously in tumors. However, the potential of LDR Au NPs as an emerging strategy to treat cancer is strongly dependent on the macroscopic diffusion of the NPs in tumors, as well as on their microscopic internalization within the cells. Understanding the relationship between interstitial and intracellular distribution of NPs, and the outcomes of dose deposition in the cancer tissue is essential for considering future applications of radioactive Au NPs in oncology. Here, LDR Au NPs (103Pd:Pd@Au-PEG NPs) were injected in prostate cancer tumors. The particles were visualized at time-points by computed tomography imaging ( in vivo), transmission electron microscopy ( ex vivo), and optical microscopy ( ex vivo). These data were used in a Monte Carlo-based dosimetric model to reveal the dose deposition produced by LDR Au NPs both at tumoral and cellular scales. 103Pd:Pd@Au-PEG NPs injected in tumors produce a strong dose enhancement at the intracellular level. However, energy deposition is mainly confined around vesicles filled with NPs, and not necessarily close to the nuclei. This suggests that indirect damage caused by the production of reactive oxygen species might be the leading therapeutic mechanism of tumor growth control, over direct damage to the DNA.
Archive | 2018
Marc-André Fortin; Teresa Simão; Myriam Laprise-Pelletier
Gold nanoparticles have properties useful in biomedical imaging and cancer therapy. This biocompatible metal has been used for centuries in medicine. In the last 20 years, the rapid developments in nanotechnology have revealed several applications of nanosized gold, which are now being evaluated for clinical procedures. For instance, gold nanoparticles can be used to develop sensors due to their optical properties; they also make possible the development of new hyperthermia and drug delivery treatments. However, gold nanoparticles could find more immediate and direct applications in medical physics procedures, such as X-ray imaging and radiotherapy. First, this chapter provides an overview of the different synthesis routes for the production of biomedical gold nanoparticles. Then, an overview of the physical principles of photon–matter interactions, that are fundamental to the concept of X-ray attenuation in biological tissues, is presented. The properties of gold nanoparticles as contrast agents for X-ray and computed tomography (CT) imaging are reviewed, along with the principles of the radiosensitization effect useful in medical physics and oncology. The main mechanisms leading to dose enhancement, to cell damage and to cell death, are described in the light of the specific interactions taking place between ionizing photons and high-Z materials such as gold (Au) when these are distributed in biological tissues such as tumours. Finally, the performance of gold nanoparticles as CT contrast agents and radiosensitizers in oncology is discussed, in the perspective of their consideration for clinical applications.
international conference of the ieee engineering in medicine and biology society | 2016
Frederic Tessier; Myriam Laprise-Pelletier; Eric Boilard; Marc-André Fortin; Amine Miled
Drug delivery at the nano-scale is becoming an important topic in nano and regenerative medicine as it can offer a very localized therapy. Therefore, niosomes are one of the most important vehicles to release drug at the nanoscale. In this paper, we present a new automated microsystem for niosome generation on-demand. Used niosome were based on a mixture of cholesterol and dicetyl phosphate with chloroform. Three compact micropumps are connected to a microfluidic substrate in order to generate 100 nm noisome vesicles. Through this paper we also investigated the impact of using 150 μm pseudo-Y and cross shape microchannel on the diameter of vesicles. We have observed reliable results with Y-shaped microchannel, which was able to generate vesicles down to 91 nm. All the system is based on a low-cost fabrication process using dry photo resist.
Nanoscale | 2013
Rémy Guillet-Nicolas; Myriam Laprise-Pelletier; Mahesh Muraleedharan Nair; Pascale Chevallier; Jean Lagueux; Yves Gossuin; Sophie Laurent; Freddy Kleitz; Marc-André Fortin