Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myriam M. Chaumeil is active.

Publication


Featured researches published by Myriam M. Chaumeil.


Cancer Research | 2010

Noninvasive Detection of Target Modulation following Phosphatidylinositol 3-Kinase Inhibition Using Hyperpolarized 13C Magnetic Resonance Spectroscopy

Christopher S. Ward; Humsa S. Venkatesh; Myriam M. Chaumeil; Alissa H. Brandes; Mark VanCriekinge; Hagit Dafni; Subramaniam Sukumar; Sarah J. Nelson; Daniel B. Vigneron; John Kurhanewicz; C. David James; Daphne A. Haas-Kogan; Sabrina M. Ronen

Numerous mechanism-based anticancer drugs that target the phosphatidylinositol 3-kinase (PI3K) pathway are in clinical trials. However, it remains challenging to assess responses by traditional imaging methods. Here, we show for the first time the efficacy of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in detecting the effect of PI3K inhibition by monitoring hyperpolarized [1-(13)C]lactate levels produced from hyperpolarized [1-(13)C]pyruvate through lactate dehydrogenase (LDH) activity. In GS-2 glioblastoma cells, PI3K inhibition by LY294002 or everolimus caused hyperpolarized lactate to drop to 42 +/- 12% and to 76 +/- 5%, respectively. In MDA-MB-231 breast cancer cells, hyperpolarized lactate dropped to 71 +/- 15% after treatment with LY294002. These reductions were correlated with reductions in LDH activity to 48 +/- 4%, 63 +/- 4%, and 69 +/- 12%, respectively, and were associated with a drop in levels of LDHA mRNA and LDHA and hypoxia-inducible factor-1alpha proteins. Supporting these findings, tumor growth inhibition achieved by everolimus in murine GS-2 xenografts was associated with a drop in the hyperpolarized lactate-to-pyruvate ratio detected by in vivo MRS imaging, whereas an increase in this ratio occurred with tumor growth in control animals. Taken together, our findings illustrate the application of hyperpolarized (13)C MRS of pyruvate to monitor alterations in LDHA activity and expression caused by PI3K pathway inhibition, showing the potential of this method for noninvasive imaging of drug target modulation.


Clinical Cancer Research | 2013

Gene Expression Profile Identifies Tyrosine Kinase c-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance

Arman Jahangiri; Michael De Lay; Liane Miller; W. Shawn Carbonell; Yu-Long Hu; Kan Lu; Maxwell Tom; Jesse Paquette; Taku Tokuyasu; Sean Tsao; Roxanne Marshall; Arie Perry; Kirsten Bjorgan; Myriam M. Chaumeil; Sabrina M. Ronen; Gabriele Bergers; Manish K. Aghi

Purpose: To identify mediators of glioblastoma antiangiogenic therapy resistance and target these mediators in xenografts. Experimental Design: We conducted microarray analysis comparing bevacizumab-resistant glioblastomas (BRG) with pretreatment tumors from the same patients. We established novel xenograft models of antiangiogenic therapy resistance to target candidate resistance mediator(s). Results: BRG microarray analysis revealed upregulation versus pretreatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pretreatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met–activated focal adhesion kinase and STAT3. We developed 2 novel xenograft models of antiangiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pretreatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met short hairpin RNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts. Conclusion: These findings support the role of c-Met in survival in hypoxia and invasion, features associated with antiangiogenic therapy resistance, and growth and therapeutic resistance of xenografts resistant to antiangiogenic therapy. Therapeutically targeting c-Met could prevent or overcome antiangiogenic therapy resistance. Clin Cancer Res; 19(7); 1773–83. ©2012 AACR.


Nature Communications | 2013

Non-invasive in vivo assessment of IDH1 mutational status in glioma

Myriam M. Chaumeil; Peder E. Z. Larson; Hikari A.I. Yoshihara; Olivia M. Danforth; Daniel B. Vigneron; Sarah J. Nelson; Russell O. Pieper; Joanna J. Phillips; Sabrina M. Ronen

Gain-of-function mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade gliomas and secondary glioblastoma. They lead to intracellular accumulation of the oncometabolite 2-hydroxyglutarate, represent an early pathogenic event and are considered a therapeutic target. Here we show, in this proof-of-concept study, that [1-(13)C] α-ketoglutarate can serve as a metabolic imaging agent for non-invasive, real-time, in vivo monitoring of mutant IDH1 activity, and can inform on IDH1 status. Using (13)C magnetic resonance spectroscopy in combination with dissolution dynamic nuclear polarization, the metabolic fate of hyperpolarized [1-(13)C] α-ketoglutarate is studied in isogenic glioblastoma cells that differ only in their IDH1 status. In lysates and tumours that express wild-type IDH1, only hyperpolarized [1-(13)C] α-ketoglutarate can be detected. In contrast, in cells that express mutant IDH1, hyperpolarized [1-(13)C] 2-hydroxyglutarate is also observed, both in cell lysates and in vivo in orthotopic tumours.


NeuroImage | 2012

Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma.

Myriam M. Chaumeil; Tomoko Ozawa; Ilwoo Park; Kristen Scott; C. David James; Sarah J. Nelson; Sabrina M. Ronen

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in humans. Because the phosphatidylinositol-3-kinase (PI3K) signaling pathway is activated in more than 88% of GBM, new drugs which target this pathway, such as the mTOR inhibitor Everolimus, are currently in clinical trials. Early tumor response to molecularly targeted treatments remains challenging to assess non-invasively, because it is often associated with tumor stasis or slower tumor growth. Innovative neuroimaging methods are therefore critically needed to provide metabolic or functional information that is indicative of targeted therapeutic action at early time points during the course of treatment. In this study, we demonstrated for the first time that hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) can be used on a clinical MR system to monitor early metabolic response of orthotopic GBM tumors to Everolimus treatment through measurement of the HP lactate-to-pyruvate ratios. The study was performed on a highly invasive non-enhancing orthotopic GBM tumor model in rats (GS-2 tumors), which replicates many fundamental features of human GBM tumors. Seven days after initiation of treatment there was a significant drop in the HP lactate-to-pyruvate ratio from the tumor tissue in treated animals relative to day 0 (67%±27% decrease). In the control group, no significant changes in the HP lactate-to-pyruvate ratios were observed. Importantly, at the 7 day time point, conventional MR imaging (MRI) was unable to detect a significant difference in tumor size between control and treated groups. Inhibition of tumor growth by conventional MRI was observed from day 15 of treatment. This implies that the decrease in the HP lactate-to-pyruvate ratio could be detected before any treatment-induced inhibition of tumor growth. Using immunohistochemical staining to further examine tumor response to treatment, we found that the decrease in the HP lactate-to-pyruvate ratio was associated with a drop in expression of lactate dehydrogenase, the enzyme that catalyzes pyruvate to lactate conversion. Also evident was decreased staining for carbonic anhydrase IX (CA-IX), an indicator of hypoxia-inducible factor 1α (HIF-1α) activity, which, in turn, regulates expression of lactate dehydrogenase. To our knowledge, this study is the first report of the use of HP 13C MRSI at a clinical field strength to monitor GBM response to molecularly targeted treatments. It highlights the potential of HP lactate-to-pyruvate ratio as an early biomarker of response, thereby supporting further investigation of this non-invasive imaging approach for eventual clinical application.


Neuro-oncology | 2014

Lactate dehydrogenase A silencing in IDH mutant gliomas.

Charles Chesnelong; Myriam M. Chaumeil; Michael D. Blough; Mohammad Al-Najjar; Owen D. Stechishin; Jennifer A. Chan; Russell O. Pieper; Sabrina M. Ronen; Samuel Weiss; H. Artee Luchman; J. Gregory Cairncross

BACKGROUND Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. METHODS We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. RESULTS We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. CONCLUSION To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis.


Neuro-oncology | 2012

Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma.

Humsa S. Venkatesh; Myriam M. Chaumeil; Christopher S. Ward; Daphne A. Haas-Kogan; C. David James; Sabrina M. Ronen

The phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is activated in more than88% of glioblastomas (GBM). New drugs targeting this pathway are currently in clinical trials. However, noninvasive assessment of treatment response remains challenging. By using magnetic resonance spectroscopy (MRS), PI3K/Akt/mTOR pathway inhibition was monitored in 3 GBM cell lines (GS-2, GBM8, and GBM6; each with a distinct pathway activating mutation) through the measurement of 2 mechanistically linked MR biomarkers: phosphocholine (PC) and hyperpolarized lactate.(31)P MRS studies showed that treatment with the PI3K inhibitor LY294002 induced significant decreases in PC to 34 %± 9% of control in GS-2 cells, 48% ± 5% in GBM8, and 45% ± 4% in GBM6. The mTOR inhibitor everolimus also induced a significant decrease in PC to 62% ± 14%, 57% ± 1%, and 58% ± 1% in GS-2, GBM8, and GBM6 cells, respectively. Using hyperpolarized (13)C MRS, we demonstrated that hyperpolarized lactate levels were significantly decreased following PI3K/Akt/mTOR pathway inhibition in all 3 cell lines to 51% ± 10%, 62% ± 3%, and 58% ± 2% of control with LY294002 and 72% ± 3%, 61% ± 2%, and 66% ± 3% of control with everolimus in GS-2, GBM8, and GBM6 cells, respectively. These effects were mediated by decreases in the activity and expression of choline kinase α and lactate dehydrogenase, which respectively control PC and lactate production downstream of HIF-1. Treatment with the DNA damaging agent temozolomide did not have an effect on either biomarker in any cell line. This study highlights the potential of PC and hyperpolarized lactate as noninvasive MR biomarkers of response to targeted inhibitors in GBM.


Cancer Research | 2014

Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma

Myriam M. Chaumeil; Peder E. Z. Larson; Sarah M. Woods; Larry Cai; Pia Eriksson; Aaron E. Robinson; Janine M. Lupo; Daniel B. Vigneron; Sarah J. Nelson; Russell O. Pieper; Joanna J. Phillips; Sabrina M. Ronen

Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event, and are associated with epigenetically driven modulations of metabolism. Of particular interest is the recently uncovered relationship between the IDH1 mutation and decreased activity of the branched-chain amino acid transaminase 1 (BCAT1) enzyme. Noninvasive imaging methods that can assess BCAT1 activity could therefore improve detection of mutant IDH1 tumors and aid in developing and monitoring new targeted therapies. BCAT1 catalyzes the transamination of branched-chain amino acids while converting α-ketoglutarate (α-KG) to glutamate. Our goal was to use (13)C magnetic resonance spectroscopy to probe the conversion of hyperpolarized [1-(13)C] α-KG to hyperpolarized [1-(13)C] glutamate as a readout of BCAT1 activity. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized [1-(13)C] α-KG, hyperpolarized [1-(13)C] glutamate production was detected both in cells and in vivo, and the level of hyperpolarized [1-(13)C] glutamate was significantly lower in mutant IDH1 cells and tumors compared with their IDH1-wild-type counterparts. Importantly however, in our cells the observed drop in hyperpolarized [1-(13)C] glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized [1-(13)C] glutamate could thus inform on multiple mutant IDH1-associated metabolic events that mediate reduced glutamate production.


Cancer Research | 2015

IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism.

Jose L. Izquierdo-Garcia; Pavithra Viswanath; Pia Eriksson; Larry Cai; Marina Radoul; Myriam M. Chaumeil; Michael D. Blough; H. Artee Luchman; Samuel Weiss; J. Gregory Cairncross; Joanna J. Phillips; Russell O. Pieper; Sabrina M. Ronen

Mutant isocitrate dehydrogenase 1 (IDH1) catalyzes the production of 2-hydroxyglutarate but also elicits additional metabolic changes. Levels of both glutamate and pyruvate dehydrogenase (PDH) activity have been shown to be affected in U87 glioblastoma cells or normal human astrocyte (NHA) cells expressing mutant IDH1, as compared with cells expressing wild-type IDH1. In this study, we show how these phenomena are linked through the effects of IDH1 mutation, which also reprograms pyruvate metabolism. Reduced PDH activity in U87 glioblastoma and NHA IDH1 mutant cells was associated with relative increases in PDH inhibitory phosphorylation, expression of pyruvate dehydrogenase kinase-3, and levels of hypoxia inducible factor-1α. PDH activity was monitored in these cells by hyperpolarized (13)C-magnetic resonance spectroscopy ((13)C-MRS), which revealed a reduction in metabolism of hyperpolarized 2-(13)C-pyruvate to 5-(13)C-glutamate, relative to cells expressing wild-type IDH1. (13)C-MRS also revealed a reduction in glucose flux to glutamate in IDH1 mutant cells. Notably, pharmacological activation of PDH by cell exposure to dichloroacetate (DCA) increased production of hyperpolarized 5-(13)C-glutamate in IDH1 mutant cells. Furthermore, DCA treatment also abrogated the clonogenic advantage conferred by IDH1 mutation. Using patient-derived mutant IDH1 neurosphere models, we showed that PDH activity was essential for cell proliferation. Taken together, our results established that the IDH1 mutation induces an MRS-detectable reprogramming of pyruvate metabolism, which is essential for cell proliferation and clonogenicity, with immediate therapeutic implications.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis

Myriam M. Chaumeil; Julien Valette; Martine Guillermier; Emmanuel Brouillet; Fawzi Boumezbeur; Anne-Sophie Hérard; Gilles Bloch; Philippe Hantraye; Vincent Lebon

Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, 31P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish 31P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer 31P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (VTCA), and the rate of ATP synthesis (VATP) in primate monkeys by using 18F-FDG PET scan, indirect 13C MRS, and saturation transfer 31P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 ± 0.07 μmol·g−1·min−1, VTCA = 0.63 ± 0.12 μmol·g−1·min−1, and VATP = 7.8 ± 2.3 μmol·g−1·min−1. The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer 31P MRS for directly evaluating ATP synthesis in the living brain.


Cancer Research | 2014

Changes in Pyruvate Metabolism Detected by Magnetic Resonance Imaging Are Linked to DNA Damage and Serve as a Sensor of Temozolomide Response in Glioblastoma Cells

Ilwoo Park; Joydeep Mukherjee; Motokazu Ito; Myriam M. Chaumeil; Llewellyn E. Jalbert; Karin Gaensler; Sabrina M. Ronen; Sarah J. Nelson; Russell O. Pieper

Recent findings show that exposure to temozolomide (TMZ), a DNA-damaging drug used to treat glioblastoma (GBM), can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic GBM cell populations differing only in expression of the DNA repair protein methyltransferase (MGMT), a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-((13))C]-pyruvate-based MRI was used to monitor temporal effects on pyruvate metabolism in parallel with DNA-damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA-damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased PK activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by MRI methods as an early sensor of TMZ therapeutic response.

Collaboration


Dive into the Myriam M. Chaumeil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pia Eriksson

University of California

View shared research outputs
Top Co-Authors

Avatar

Chloe Najac

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Cai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge