Myriam Rai
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myriam Rai.
PLOS ONE | 2008
Myriam Rai; Elisabetta Soragni; Kai Jenssen; Ryan Burnett; David M. Herman; Giovanni Coppola; Daniel H. Geschwind; Joel M. Gottesfeld; Massimo Pandolfo
Background Friedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAA⋅TTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4. Methodology/Principal Findings By chromatin immunoprecipitation, we detected the same heterochromatin marks in homozygous mice carrying a (GAA)230 repeat in the first intron of the mouse frataxin gene (KIKI mice). These animals have decreased frataxin levels and, by microarray analysis, show significant gene expression changes in several tissues. We treated KIKI mice with a novel histone deacetylase inhibitor, compound 106, which substantially increases frataxin mRNA levels in cells from Friedreich ataxia individuals. Treatment increased histone H3 and H4 acetylation in chromatin near the GAA repeat and restored wild-type frataxin levels in the nervous system and heart, as determined by quantitative RT-PCR and semiquantitative western blot analysis. No toxicity was observed. Furthermore, most of the differentially expressed genes in KIKI mice reverted towards wild-type levels. Conclusions/Significance Lack of acute toxicity, normalization of frataxin levels and of the transcription profile changes resulting from frataxin deficiency provide strong support to a possible efficacy of this or related compounds in reverting the pathological process in Friedreich ataxia, a so far incurable neurodegenerative disease.
Disease Models & Mechanisms | 2013
Aurore Hick; Marie Wattenhofer-Donzé; Satyan Chintawar; Philippe Tropel; Jodie P. Simard; Nadège Vaucamps; David Gall; Laurie Lambot; Cécile André; Laurence Reutenauer; Myriam Rai; Marius Teletin; Nadia Messaddeq; Serge N. Schiffmann; Stéphane Viville; Christopher E. Pearson; Massimo Pandolfo; Hélène Puccio
SUMMARY Friedreich’s ataxia (FRDA) is a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy. FRDA is due to expanded GAA repeats within the first intron of the gene encoding frataxin, a conserved mitochondrial protein involved in iron-sulphur cluster biosynthesis. This mutation leads to partial gene silencing and substantial reduction of the frataxin level. To overcome limitations of current cellular models of FRDA, we derived induced pluripotent stem cells (iPSCs) from two FRDA patients and successfully differentiated them into neurons and cardiomyocytes, two affected cell types in FRDA. All FRDA iPSC lines displayed expanded GAA alleles prone to high instability and decreased levels of frataxin, but no biochemical phenotype was observed. Interestingly, both FRDA iPSC-derived neurons and cardiomyocytes exhibited signs of impaired mitochondrial function, with decreased mitochondrial membrane potential and progressive mitochondrial degeneration, respectively. Our data show for the first time that FRDA iPSCs and their neuronal and cardiac derivatives represent promising models for the study of mitochondrial damage and GAA expansion instability in FRDA.
Human Molecular Genetics | 2009
Giovanni Coppola; Daniele Marmolino; Daning Lu; Qinhong Wang; Miriam Cnop; Myriam Rai; Fabio Acquaviva; Sergio Cocozza; Massimo Pandolfo; Daniel H. Geschwind
Friedreich’s ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARγ coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARγ pathway affects frataxin levels in vitro, supporting PPARγ as a novel therapeutic target in FRDA.
Annals of Neurology | 2014
Elisabetta Soragni; Wenyan Miao; Marco Iudicello; David Jacoby; Stefania De Mercanti; Marinella Clerico; Filomena Longo; Antonio Piga; Sherman Ku; Erica Campau; Jintang Du; Pablo Penalver; Myriam Rai; Joseph C. Madara; Kristopher L. Nazor; Melinda O'Connor; Anton Maximov; Jeanne F. Loring; Massimo Pandolfo; Luca L. Durelli; Joel M. Gottesfeld; James R. Rusche
To investigate whether a histone deacetylase inhibitor (HDACi) would be effective in an in vitro model for the neurodegenerative disease Friedreich ataxia (FRDA) and to evaluate safety and surrogate markers of efficacy in a phase I clinical trial in patients.
The Journal of Neuroscience | 2009
Satyan Chintawar; Raphael Hourez; Ajay Ravella; David Gall; David Orduz; Myriam Rai; Don Patrick Bishop; Stefano Geuna; Serge N. Schiffmann; Massimo Pandolfo
The B05 transgenic SCA1 mice, expressing human ataxin-1 with an expanded polyglutamine tract in cerebellar Purkinje cells (PCs), recapitulate many pathological and behavioral characteristics of the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1), including progressive ataxia and PC loss. We transplanted neural precursor cells (NPCs) derived from the subventricular zone of GFP-expressing adult mice into the cerebellar white matter of SCA1 mice when they showed absent (5 weeks), initial (13 weeks), and significant (24 weeks) PC loss. Only in mice with significant cell loss, grafted NPCs migrated into the cerebellar cortex. These animals showed improved motor skills compared with sham-treated controls. No grafted cell adopted the morphological and immunohistochemical characteristics of PCs, but the cerebellar cortex in NPC-grafted SCA1 mice had a significantly thicker molecular layer and more surviving PCs. Perforated patch-clamp recordings revealed a normalization of the PC basal membrane potential, which was abnormally depolarized in sham-treated animals. No significant increase in levels of several neurotrophic factors was observed, suggesting, along with morphological observation, that the neuroprotective effect of grafted NPCs was mediated by direct contact with the host PCs. We postulate that a similar neuroprotective effect of NPCs may be applicable to other cerebellar degenerative diseases.
Annals of Neurology | 2011
Giovanni Coppola; Ryan Burnett; Susan Perlman; Revital Versano; Fuying Gao; Heather L. Plasterer; Myriam Rai; Francesco Saccà; Alessandro Filla; David R. Lynch; James R. Rusche; Joel M. Gottesfeld; Massimo Pandolfo; Daniel H. Geschwind
Gene expression studies in peripheral tissues from patients with neurodegenerative disorders can provide insights into disease pathogenesis, and identify potential biomarkers, an important goal of translational research in neurodegeneration. Friedreich Ataxia (FRDA) is a chronic neurodegenerative disease caused by reduced transcription of frataxin, a ubiquitously expressed protein. We studied in vitro lymphocytes from FRDA patients and carriers to identify a peripheral gene expression phenotype. Peripheral biomarkers related to disease status would be extremely valuable for assessing drug efficacy and could provide new pathophysiological insights.
Annals of Neurology | 2012
Miriam Cnop; Mariana Igoillo-Esteve; Myriam Rai; Audrey Begu; Yasmina Serroukh; Chantal Depondt; Anyishaï Musuaya; Ihsane Marhfour; Laurence Ladrière; Xavier Moles Lopez; Dionysios Lefkaditis; Fabrice Moore; Jean Pierre Brion; J. Mark Cooper; A. H. V. Schapira; Anne Clark; Arnulf H. Koeppen; Piero Marchetti; Massimo Pandolfo; Decio L. Eizirik; Françoise Fery
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known. We aimed to evaluate the relative contribution of insulin resistance and β‐cell failure and the pathogenic mechanisms involved in FRDA diabetes.
Lancet Neurology | 2016
Kathrin Reetz; Imis Dogan; Ralf-Dieter Hilgers; Paola Giunti; Caterina Mariotti; Alexandra Durr; Sylvia Boesch; Thomas Klopstock; Francisco Javier Rodríguez de Rivera; Ludger Schöls; Thomas Klockgether; Katrin Bürk; Myriam Rai; Massimo Pandolfo; Jörg B. Schulz; Wolfgang Nachbauer; Andreas Eigentler; Chantal Depondt; Sandra Benaich; Perrine Charles; Claire Ewenczyk; Marie-Lorraine Monin; Manuel Dafotakis; Kathrin Fedosov; Claire Didszun; Ummehan Ermis; Ilaria Giordano; Dagmar Timmann; Ivan Karin; Christiane Neuhofer
BACKGROUND The European Friedreichs Ataxia Consortium for Translational Studies (EFACTS) is a prospective international registry investigating the natural history of Friedreichs ataxia. We used data from EFACTS to assess disease progression and the predictive value of disease-related factors on progression, and estimated sample sizes for interventional randomised clinical trials. METHODS We enrolled patients with genetically confirmed Friedreichs ataxia from 11 European study sites in Austria, Belgium, France, Germany, Italy, Spain, and the UK. Patients were seen at three visits-baseline, 1 year, and 2 years. Our primary endpoint was the Scale for the Assessment and Rating of Ataxia (SARA). Secondary outcomes were the Inventory of Non-Ataxia Signs (INAS), the Spinocerebellar Ataxia Functional Index (SCAFI), phonemic verbal fluency (PVF), and the quality of life measures activities of daily living (ADL) and EQ-5D-3L index. We estimated the yearly progression for each outcome with linear mixed-effect modelling. This study is registered with ClinicalTrials.gov, number NCT02069509, and follow-up assessments and recruitment of new patients are ongoing. FINDINGS Between Sept 15, 2010, and Nov 21, 2013, we enrolled 605 patients with Friedreichs ataxia. 546 patients (90%) contributed data with at least one follow-up visit. The progression rate on SARA was 0·77 points per year (SE 0·06) in the overall cohort. Deterioration in SARA was associated with younger age of onset (-0·02 points per year [0·01] per year of age) and lower SARA baseline scores (-0·07 points per year [0·01] per baseline point). Patients with more than 353 GAA repeats on the shorter allele of the FXN locus had a higher SARA progression rate (0·09 points per year [0·02] per additional 100 repeats) than did patients with fewer than 353 repeats. Annual worsening was 0·10 points per year (0·03) for INAS, -0·04 points per year (0·01) for SCAFI, 0·93 points per year (0·06) for ADL, and -0·02 points per year (0·004) for EQ-5D-3L. PVF performance improved by 0·99 words per year (0·14). To detect a 50% reduction in SARA progression at 80% power, 548 patients would be needed in a 1 year clinical trial and 184 would be needed for a 2 year trial. INTERPRETATION Our results show that SARA is a suitable clinical rating scale to detect deterioration of ataxia symptoms over time; ADL is an appropriate measure to monitor changes in daily self-care activities; and younger age at disease onset is a major predictor for faster disease progression. The results of the EFACTS longitudinal analysis provide suitable outcome measures and sample size calculations for the design of upcoming clinical trials of Friedreichs ataxia. FUNDING European Commission.
Neurology | 2014
Chantal Depondt; Simona Donatello; Nicolas Simonis; Myriam Rai; Roxane van Heurck; Marc Abramowicz; Marc D'Hooghe; Massimo Pandolfo
Autosomal recessive ataxias affect about 1 person in 20,000. Friedreich ataxia accounts for one-third of the cases in Caucasians; the others are due to a growing list of very rare molecular defects, including mild forms of metabolic diseases. In nearly 50%, the genetic cause remains undetermined.1
Neurology Genetics | 2016
Chantal Depondt; Simona Donatello; Myriam Rai; François Charles Wang; Mario Manto; Nicolas Simonis; Massimo Pandolfo
Objective: To identify the causative gene mutation in a 5-generation Belgian family with dominantly inherited spinocerebellar ataxia and polyneuropathy, in which known genetic etiologies had been excluded. Methods: We collected DNA samples of 28 family members, including 7 living affected individuals, whose clinical records were reviewed by a neurologist experienced in ataxia. We combined linkage data of 21 family members with whole exome sequencing in 2 affected individuals to identify shared heterozygous variants mapping to potentially linked regions. Variants were screened for rarity and for predicted damaging effect. A candidate mutation was confirmed by Sanger sequencing and tested for cosegregation with the disease. Results: Affected individuals presented with late-onset sensorimotor axonal polyneuropathy; all but one also had cerebellar ataxia. We identified a variant in the MME gene, p.C143Y, that was absent from control databases, cosegregated with the phenotype, and was predicted to have a strong damaging effect on the encoded protein by all algorithms we used. Conclusions: MME encodes neprilysin (NEP), a zinc-dependent metalloprotease expressed in most tissues, including the central and peripheral nervous systems. The mutated cysteine 143 forms a disulfide bridge, which is 100% conserved in NEP and in similar enzymes. The recent identification of recessive MME mutations in 10 unrelated individuals from Japan with axonal polyneuropathy further supports the causality of the mutation, despite the dominant mode of inheritance and the presence of cerebellar involvement in our study family. Functional studies are needed to identify the mechanisms underlying these differences.