Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myriam Ricarda Lorenz is active.

Publication


Featured researches published by Myriam Ricarda Lorenz.


Molecular Imaging and Biology | 2008

Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents

Volker Mailänder; Myriam Ricarda Lorenz; Verena Holzapfel; Anna Musyanovych; Karin Fuchs; Markus Wiesneth; Paul Walther; Katharina Landfester; Hubert Schrezenmeier

Cell labeling by superparamagnetic iron oxide particles (SPIO) has emerged as a potentially powerful tool to monitor trafficking of transplanted cells by magnetic resonance tomography, e.g., in studies for tissue repair. However, intracellular labeling is mostly achieved by transfection agents not approved for clinical use. In this work, the feasibility and efficiency of labeling human mesenchymal stem cells (MSC) and HeLa cells with two commercially available SPIOs (Resovist® and Feridex®) without transfection agents was evaluated. In both cell types, Resovist® without a transfection agent was more efficiently taken up than Feridex®. Increasing the concentration of Resovist® can yield similar amounts of iron in cells as SPIOs with transfection agents. This offers the opportunity to omit transfection agents from the labeling protocol when Resovist® is used. Intracellular localization of the contrast agents is found by light microscopy and confirmed by electron microscopy. Coagulation of the SPIO nanoparticles, which is problematic for the quantification of the intracellular iron content, was observed and analyzed with a fluorescent activated cell sorter. As Resovist® consists of a carboxydextran shell in contrast to Feridex® which is composed of a dextran shell, we synthesized fluorescent polymeric nanoparticles as model systems with different amounts of carboxyl groups on the surface by the miniemulsion process. A steady increase in uptake of nanoparticles was detected with a higher density of carboxyl groups showing the relevance of charged groups as in the case of Resovist®. Aggregation of these polymeric nanoparticles was not found.


Clinical Immunology | 2013

X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis.

Carsten Speckmann; Kai Lehmberg; Michael H. Albert; R.B. Damgaard; M. Fritsch; Mads Gyrd-Hansen; Anne Rensing-Ehl; Thomas Vraetz; Bodo Grimbacher; Ulrich Salzer; Ilka Fuchs; Heike Ufheil; Bernd H. Belohradsky; A. Hassan; C.M. Cale; M. Elawad; Brigitte Strahm; S. Schibli; M. Lauten; M. Kohl; J.J. Meerpohl; B. Rodeck; Reinhard Kolb; W. Eberl; J. Soerensen; H. von Bernuth; Myriam Ricarda Lorenz; Klaus Schwarz; U zur Stadt; Stephan Ehl

X-linked inhibitor of apoptosis (XIAP) deficiency caused by mutations in BIRC4 was initially described in patients with X-linked lymphoproliferative syndrome (XLP) who had no mutations in SH2D1A. In the initial reports, EBV-associated hemophagocytic lymphohistiocytosis (HLH) was the predominant clinical phenotype. Among 25 symptomatic patients diagnosed with XIAP deficiency, we identified 17 patients who initially presented with manifestations other than HLH. These included Crohn-like bowel disease (n=6), severe infectious mononucleosis (n=4), isolated splenomegaly (n=3), uveitis (n=1), periodic fever (n=1), fistulating skin abscesses (n=1) and severe Giardia enteritis (n=1). Subsequent manifestations included celiac-like disease, antibody deficiency, splenomegaly and partial HLH. Screening by flow cytometry identified 14 of 17 patients in our cohort. However, neither genotype nor protein expression nor results from cell death studies were clearly associated with the clinical phenotype. Only mutation analysis can reliably identify affected patients. XIAP deficiency must be considered in a wide range of clinical presentations.


Blood | 2016

XLF deficiency results in reduced N-nucleotide addition during V(D)J recombination

Hanna IJspeert; Jacob Rozmus; Klaus Schwarz; René L. Warren; David van Zessen; Robert A. Holt; Ingrid Pico-Knijnenburg; Erik J. Simons; Isabel Jerchel; Angela Wawer; Myriam Ricarda Lorenz; Turkan Patiroglu; Himmet Haluk Akar; Ricardo Leite; Nicole S. Verkaik; Andrew Stubbs; Dik C. van Gent; Jacques J.M. van Dongen; Mirjam van der Burg

Repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining pathway (NHEJ) is important not only for repair of spontaneous breaks but also for breaks induced in developing lymphocytes during V(D)J (variable [V], diversity [D], and joining [J] genes) recombination of their antigen receptor loci to create a diverse repertoire. Mutations in the NHEJ factor XLF result in extreme sensitivity for ionizing radiation, microcephaly, and growth retardation comparable to mutations in LIG4 and XRCC4, which together form the NHEJ ligation complex. However, the effect on the immune system is variable (mild to severe immunodeficiency) and less prominent than that seen in deficiencies of NHEJ factors ARTEMIS and DNA-dependent protein kinase catalytic subunit, with defects in the hairpin opening step, which is crucial and unique for V(D)J recombination. Therefore, we aimed to study the role of XLF during V(D)J recombination. We obtained clinical data from 9 XLF-deficient patients and performed immune phenotyping and antigen receptor repertoire analysis of immunoglobulin (Ig) and T-cell receptor (TR) rearrangements, using next-generation sequencing in 6 patients. The results were compared with XRCC4 and LIG4 deficiency. Both Ig and TR rearrangements showed a significant decrease in the number of nontemplated (N) nucleotides inserted by terminal deoxynucleotidyl transferase, which resulted in a decrease of 2 to 3 amino acids in the CDR3. Such a reduction in the number of N-nucleotides has a great effect on the junctional diversity, and thereby on the total diversity of the Ig and TR repertoire. This shows that XLF has an important role during V(D)J recombination in creating diversity of the repertoire by stimulating N-nucleotide insertion.


Macromolecular Bioscience | 2008

Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells

Myriam Ricarda Lorenz; Maria-Verena Kohnle; Martin Dass; Paul Walther; Anita Höcherl; Ulrich Ziener; Katharina Landfester; Volker Mailänder

Fluorescent polyisoprene nanoparticles were synthesized by the miniemulsion technique as marker particles for cells. The uptake of the non-functionalized polyisoprene nanoparticles, without any transfection agents, into different adherent (HeLa) and also suspension (Jurkat) cell lines is strikingly efficient and fast compared to other polymeric particles, and leads to high loading of the cells. The intracellular polyisoprene particles are localized as single particles in endosomes distributed throughout the entire cytoplasm. The uptake kinetics shows that particle internalization starts during the first minutes of incubation and is finished after 48 h of incubation. Since (unfunctionalized) polystyrene particles show a comparable, low uptake behavior in cells, the uptake rates can be tuned by the amount of polystyrene in polyisoprene/polystyrene copolymer particles. As polyisoprene nanoparticles are internalized by different cell lines that are relevant for biomedical applications, they can be used to label these cells efficiently if a marker is incorporated in the particles. As polyisoprene is not or is hardly biodegradable the particles should be suited for long-term applications.


Blood | 2016

Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome.

Simon Völkl; Anne Rensing-Ehl; Andrea Allgäuer; Elisabeth Schreiner; Myriam Ricarda Lorenz; Jan Rohr; Christian Klemann; Ilka Fuchs; Volker Schuster; André O. von Bueren; Nora Naumann-Bartsch; Eleonora Gambineri; Kathrin Siepermann; Robin Kobbe; Michaela Nathrath; Peter D. Arkwright; Maurizio Miano; Klaus-Daniel Stachel; Markus Metzler; Klaus Schwarz; Anita Kremer; Carsten Speckmann; Stephan Ehl; Andreas Mackensen

Autoimmune lymphoproliferative syndrome (ALPS) is a human disorder characterized by defective Fas signaling, resulting in chronic benign lymphoproliferation and accumulation of TCRαβ(+) CD4(-) CD8(-) double-negative T (DNT) cells. Although their phenotype resembles that of terminally differentiated or exhausted T cells, lack of KLRG1, high eomesodermin, and marginal T-bet expression point instead to a long-lived memory state with potent proliferative capacity. Here we show that despite their terminally differentiated phenotype, human ALPS DNT cells exhibit substantial mitotic activity in vivo. Notably, hyperproliferation of ALPS DNT cells is associated with increased basal and activation-induced phosphorylation of serine-threonine kinases Akt and mechanistic target of rapamycin (mTOR). The mTOR inhibitor rapamycin abrogated survival and proliferation of ALPS DNT cells, but not of CD4(+) or CD8(+) T cells in vitro. In vivo, mTOR inhibition reduced proliferation and abnormal differentiation by DNT cells. Importantly, increased mitotic activity and hyperactive mTOR signaling was also observed in recently defined CD4(+) or CD8(+) precursor DNT cells, and mTOR inhibition specifically reduced these cells in vivo, indicating abnormal programming of Fas-deficient T cells before the DNT stage. Thus, our results identify the mTOR pathway as a major regulator of lymphoproliferation and aberrant differentiation in ALPS.


Haematologica | 2013

Sequential decisions on FAS sequencing guided by biomarkers in patients with lymphoproliferation and autoimmune cytopenia

Anne Rensing-Ehl; Ales Janda; Myriam Ricarda Lorenz; Beryl Primrose Gladstone; Ilka Fuchs; Mario Abinun; Michael H. Albert; Karina Butler; Andrew J. Cant; Annamaria Cseh; Martin Ebinger; Sigune Goldacker; Sophie Hambleton; Holger Hebart; Leonora Houet; Karim Kentouche; Ingrid Kühnle; Kai Lehmberg; Ester Mejstrikova; Charlotte M. Niemeyer; Milen Minkov; Olaf Neth; Gregor Dückers; Stephen Owens; Joachim Rösler; Freimut H. Schilling; Volker Schuster; Markus G. Seidel; Petr Smisek; Martina Sukova

Clinical and genetic heterogeneity renders confirmation or exclusion of autoimmune lymphoproliferative syndrome difficult. To re-evaluate and improve the currently suggested diagnostic approach to patients with suspected FAS mutation, the most frequent cause of autoimmune lymphoproliferative syndrome, we prospectively determined 11 biomarkers in 163 patients with splenomegaly or lymphadenopathy and presumed or proven autoimmune cytopenia(s). Among 98 patients sequenced for FAS mutations in CD3+TCRα/β+CD4−CD8− “double negative” T cells, 32 had germline and six had somatic FAS mutations. The best a priori predictor of FAS mutations was the combination of vitamin B12 and soluble FAS ligand (cut-offs 1255 pg/mL and 559 pg/mL, respectively), which had a positive predictive value of 92% and a negative predictive value of 97%. We used these data to develop a web-based probability calculator for FAS mutations using the three most discriminatory biomarkers (vitamin B12, soluble FAS ligand, interleukin-10) of the 11 tested. Since more than 60% of patients with lymphoproliferation and autoimmune cytopenia(s) in our cohort did not harbor FAS mutations, 15% had somatic FAS mutations, and the predictive value of double-negative T-cell values was rather low (positive and negative predictive values of 61% and 77%, respectively), we argue that the previously suggested diagnostic algorithm based on determination of double-negative T cells and germline FAS sequencing, followed by biomarker analysis, is not efficient. We propose vitamin B12 and soluble FAS ligand assessment as the initial diagnostic step with subsequent decision on FAS sequencing supported by a probability-calculating tool.


Pediatric Allergy and Immunology | 2016

Activated PI3Kδ syndrome type 2: Two patients, a novel mutation and review of the literature

Peter Olbrich; Myriam Ricarda Lorenz; Paola Cura Daball; J.M. Lucena; Anne Rensing-Ehl; Berta Sanchez; Marita Führer; Marisol Camacho-Lovillo; Marta Melon; Klaus Schwarz; Olaf Neth; Carsten Speckmann

Autosomal dominant gain‐of‐function mutations in PIK3R1 encoding for the regulatory subunit (p85α, p55α, and p50α) of Class IA phosphoinositide 3‐kinase (PI3K) result in the activated PI3Kδ syndrome (APDS) type 2 characterized by childhood‐onset combined immunodeficiency, lymphoproliferation, and immune dysregulation. To improve clinical awareness and understanding of these rare diseases, we reviewed all hitherto published cases with APDS type 1 and type 2 for their clinical and immunologic symptoms and added novel clinical, immunologic, and genetic findings of two patients with APDS type 2.


Blood | 2015

Omenn syndrome associated with a functional reversion due to a somatic second-site mutation in CARD11 deficiency

Sebastian Fuchs; Anne Rensing-Ehl; Ulrich Pannicke; Myriam Ricarda Lorenz; Paul Fisch; Yogesh S. Jeelall; Jan Rohr; Carsten Speckmann; Thomas Vraetz; Susan Farmand; Annette Schmitt-Graeff; Marcus Krüger; Brigitte Strahm; Philipp Henneke; Anselm Enders; Keisuke Horikawa; Christopher C. Goodnow; Klaus Schwarz; Stephan Ehl

Omenn syndrome (OS) is a severe immunodeficiency associated with erythroderma, lymphoproliferation, elevated IgE, and hyperactive oligoclonal T cells. A restricted T-cell repertoire caused by defective thymic T-cell development and selection, lymphopenia with homeostatic proliferation, and lack of regulatory T cells are considered key factors in OS pathogenesis. We report 2 siblings presenting with cytomegalovirus (CMV) and Pneumocystis jirovecii infections and recurrent sepsis; one developed all clinical features of OS. Both carried homozygous germline mutations in CARD11 (p.Cys150*), impairing NF-κB signaling and IL-2 production. A somatic second-site mutation reverting the stop codon to a missense mutation (p.Cys150Leu) was detected in tissue-infiltrating T cells of the OS patient. Expression of p.Cys150Leu in CARD11-deficient T cells largely reconstituted NF-κB signaling. The reversion likely occurred in a prethymic T-cell precursor, leading to a chimeric T-cell repertoire. We speculate that in our patient the functional advantage of the revertant T cells in the context of persistent CMV infection, combined with lack of regulatory T cells, may have been sufficient to favor OS. This first observation of OS in a patient with a T-cell activation defect suggests that severely defective T-cell development or homeostatic proliferation in a lymphopenic environment are not required for this severe immunopathology.


Blood | 2016

Disturbed B-lymphocyte selection in autoimmune lymphoproliferative syndrome

Ales Janda; Klaus Schwarz; Mirjam van der Burg; Werner Vach; Hanna IJspeert; Myriam Ricarda Lorenz; Magdeldin Elgizouli; Kathrin Pieper; Paul Fisch; Joachim Hagel; Raquel Lorenzetti; Maximilian Seidl; Joachim Roesler; Fabian Hauck; Elisabetta Traggiai; Carsten Speckmann; Anne Rensing-Ehl; Stephan Ehl; Hermann Eibel; Marta Rizzi

Fas is a transmembrane receptor involved in the maintenance of tolerance and immune homeostasis. In murine models, it has been shown to be essential for deletion of autoreactive B cells in the germinal center. The role of Fas in human B-cell selection and in development of autoimmunity in patients carrying FAS mutations is unclear. We analyzed patients with either a somatic FAS mutation or a germline FAS mutation and somatic loss-of-heterozygosity, which allows comparing the fate of B cells with impaired vs normal Fas signaling within the same individual. Class-switched memory B cells showed: accumulation of FAS-mutated B cells; failure to enrich single V, D, J genes and single V-D, D-J gene combinations of the B-cell receptor variable region; increased frequency of variable regions with higher content of positively charged amino acids; and longer CDR3 and maintenance of polyreactive specificities. Importantly, Fas-deficient switched memory B cells showed increased rates of somatic hypermutation. Our data uncover a defect in B-cell selection in patients with FAS mutations, which has implications for the understanding of the pathogenesis of autoimmunity and lymphomagenesis of autoimmune lymphoproliferative syndrome.


Haematologica | 2017

Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome

Christian Klemann; Myrian Esquivel; Aude Magerus-Chatinet; Myriam Ricarda Lorenz; Ilka Fuchs; Nathalie Neveux; Martin Castelle; Jan Rohr; Claudia Bettoni da Cunha; Martin Ebinger; Robin Kobbe; Bernhard Kremens; Florian Kollert; Eleonora Gambineri; Kai Lehmberg; Markus G. Seidel; Kathrin Siepermann; Thomas Voelker; Volker Schuster; Sigune Goldacker; Klaus Schwarz; Carsten Speckmann; Capucine Picard; Alain Fischer; Frédéric Rieux-Laucat; Stephan Ehl; Anne Rensing-Ehl; Bénédicte Neven

Chronic benign lymphoproliferation and autoimmune cytopenias are the main features requiring treatment in FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS).[1][1],[2][2] Successful use of the mTOR inhibitor rapamycin was initially reported in the treatment of refractory

Collaboration


Dive into the Myriam Ricarda Lorenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Ehl

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Ilka Fuchs

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge