Myriam Ruault
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myriam Ruault.
Gene | 2002
Myriam Ruault; Marie Elisabeth Brun; Mario Ventura; Gérard Roizès; Albertina De Sario
We characterized MLL3, a new human member of the TRX/MLL gene family. MLL3 is expressed in peripheral blood, placenta, pancreas, testes, and foetal thymus and is weakly expressed in heart, brain, lung, liver, and kidney. It encodes a predicted protein of 4911 amino acids containing two plant homeo domains (PHD), an ATPase alpha_beta signature, a high mobility group, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) and two FY (phenylalanine tyrosine)-rich domains. The amino acid sequence of the SET domain was used to obtain a phylogenetic tree of human MLL genes and their homologues in different species. MLL3 is closely related to human MLL2, Fugu mll2, a Caenorhabditis elegans predicted protein, and Drosophila trithorax-related protein. Interestingly, PHD and SET domains are frequently found in proteins encoded by genes that are rearranged in different haematological malignancies and MLL3 maps to 7q36, a chromosome region that is frequently deleted in myeloid disorders. Partial duplications of the MLL3 gene are found in the juxtacentromeric region of chromosomes 1, 2, 13, and 21.
Journal of Cell Biology | 2011
Myriam Ruault; Arnaud De Meyer; Isabelle Loïodice; Angela Taddei
Arrays of Sir3 binding sites at telomeres are sufficient to promote long-range trans-telomere interactions.
Trends in Genetics | 2008
Myriam Ruault; Marion Dubarry; Angela Taddei
The spatial organization of the genome within the nucleus is thought to contribute to genome functions. A key component of the nuclear architecture is the nuclear envelope, which is often associated with inactive chromatin. Studies in budding yeast indicate that nuclear position can directly affect gene function. However, the causal relationship between gene position and gene activity in mammalian cells has been more elusive. Several groups recently addressed this issue by tethering genes to the inner nuclear membrane. Their studies show that the nuclear periphery is not refractory to gene transcription, but can modulate the activity of certain genes. The 3D organization of the genome might, thus, provide an additional level of regulation necessary for fine-tuning gene expression.
Gene | 2003
Marie-Elisabeth Brun; Myriam Ruault; Mario Ventura; Gérard Roizès; Albertina De Sario
We have analysed the genomic structure and transcriptional activity of a 2.3-Mb genomic sequence in the juxtacentromeric region of human chromosome 21. Our work shows that this region comprises two different chromosome domains. The 1.5-Mb proximal domain: (i) is a patchwork of chromosome duplications; (ii) shares sequence similarity with several chromosomes; (iii) contains several gene fragments (truncated genes having an intron/exon structure) intermingled with retrotransposed pseudogenes; and (iv) harbours two genes (TPTE and BAGE2) that belong to gene families and have a cancer and/or testis expression profile. The TPTE gene family was generated before the branching of Old World monkeys from the great ape lineage, by intra- and interchromosome duplications of the ancestral TPTE gene mapping to phylogenetic chromosome XIII. By contrast, the 0.8-Mb distal domain: (i) is devoid of chromosome duplications; (ii) has a chromosome 21-specific sequence; (iii) contains no gene fragments and only one retrotransposed pseudogene; and (iv) harbours six genes including housekeeping genes. G-rich sequences commonly associated with duplication termini cluster at the boundary between the two chromosome domains. These structural and transcriptional features lead us to suggest that the proximal domain has heterochromatic properties, whereas the distal domain has euchromatic properties.
European Journal of Human Genetics | 2002
Myriam Ruault; Pierre van der Bruggen; Marie-Elisabeth Brun; Shelagh Boyle; Gérard Roizès; Albertina De Sario
A first BAGE (B melanoma antigen) gene, BAGE1, was identified because it encodes a human tumour antigen recognised by a cytolytic T lymphocyte. Here, we characterised five new BAGE genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 and nine BAGE gene fragments mapping to the juxtacentromeric regions of chromosomes 9, 13, 18, and 21. Genes and gene fragments share extensive regions of 90–99% nucleotide identity. We analysed the expression of BAGE genes on 215 tumours of various histological types and on nine normal tissues. Similar to BAGE1, the new BAGE genes are expressed in melanomas, bladder and lung carcinomas and in a few tumours of other histological types. All the normal tissues were negative, with the exception of testis. Our results show that human juxtacentromeric regions harbour genes, which are transcribed and translated, in addition to gene fragments that are generally not expressed. We suggest that the pattern of expression restricted to cancer/testis is a feature of the few genes mapping to juxtacentromeric regions.
Genome Biology | 2015
Micol Guidi; Myriam Ruault; Martial Marbouty; Isabelle Loïodice; Axel Cournac; Cyrille Billaudeau; Antoine Hocher; Julien Mozziconacci; Romain Koszul; Angela Taddei
BackgroundThe spatiotemporal behavior of chromatin is an important control mechanism of genomic function. Studies in Saccharomyces cerevisiae have broadly contributed to demonstrate the functional importance of nuclear organization. Although in the wild yeast survival depends on their ability to withstand adverse conditions, most of these studies were conducted on cells undergoing exponential growth. In these conditions, as in most eukaryotic cells, silent chromatin that is mainly found at the 32 telomeres accumulates at the nuclear envelope, forming three to five foci.ResultsHere, combining live microscopy, DNA FISH and chromosome conformation capture (HiC) techniques, we report that chromosomes adopt distinct organizations according to the metabolic status of the cell. In particular, following carbon source exhaustion the genome of long-lived quiescent cells undergoes a major spatial re-organization driven by the grouping of telomeres into a unique focus or hypercluster localized in the center of the nucleus. This change in genome conformation is specific to quiescent cells able to sustain long-term viability. We further show that reactive oxygen species produced by mitochondrial activity during respiration commit the cell to form a hypercluster upon starvation. Importantly, deleting the gene encoding telomere associated silencing factor SIR3 abolishes telomere grouping and decreases longevity, a defect that is rescued by expressing a silencing defective SIR3 allele competent for hypercluster formation.ConclusionsOur data show that mitochondrial activity primes cells to group their telomeres into a hypercluster upon starvation, reshaping the genome architecture into a conformation that may contribute to maintain longevity of quiescent cells.
Genomics | 2003
Myriam Ruault; Mario Ventura; Nicolas Galtier; Marie-Elisabeth Brun; Nicoletta Archidiacono; G.érard Roizès; Albertina De Sario
In this paper, we show that the BAGE (B melanoma antigen) gene family was generated by chromosome rearrangements that occurred during the evolution of hominoids. An 84-kb DNA fragment derived from the phylogenetic 7q36 region was duplicated in the juxtacentromeric region of either chromosome 13 or chromosome 21. The duplicated region contained a fragment of the MLL3 gene, which, after juxtacentromeric reshuffling, generated the ancestral BAGE gene. Then, this ancestral gene gave rise to several independent genes through successive rounds of inter- and intrachromosome duplications. Comparison of synonymous and nonsynonymous mutations in putative coding regions shows that BAGE genes, but not the BAGE gene fragments, are under selective pressure. Our data strongly suggest that BAGE proteins have a function and that juxtacentromeric regions, whose plasticity is now largely proved, are not a simple junkyard of gene fragments, but may be the birth site of novel genes.
Gene | 1999
Myriam Ruault; Valérie Trichet; Sylvie Gimenez; Shelagh Boyle; K Gardiner; Morgane Rolland; Gérard Roizès; Albertina De Sario
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.
Gene | 2000
Valérie Trichet; Myriam Ruault; Gérard Roizès; Albertina De Sario
This paper reports the characterization of the human tubulin tyrosine ligase-like 1 gene (TTLL1), which maps to the chromosome region 22q13.1 and has been partially duplicated on three other acrocentric chromosomes: 13, 15 and 21. We describe the complete cDNA, TTLL1a, coding for the putative 423 amino acid long TTLL1 and alternative transcripts coding for truncated TTLL1. Likely TTLL1a corresponds to the 1.8 kb transcript that was detected in a wide range of tissues and has a stronger expression in heart, brain and testis. A 4.8 kb transcript was found only in brain tissues. We present an interspecies sequence comparison, revealing three conserved domains, named TTLD1, TTLD2 and TTLD3, that are specific to the TTLs and TTL-like proteins.
The EMBO Journal | 2017
Amandine Batté; Clémentine Brocas; Hélène Bordelet; Antoine Hocher; Myriam Ruault; Adouda Adjiri; Angela Taddei; Karine Dubrana
Homologous recombination (HR) is a conserved mechanism that repairs broken chromosomes via intact homologous sequences. How different genomic, chromatin and subnuclear contexts influence HR efficiency and outcome is poorly understood. We developed an assay to assess HR outcome by gene conversion (GC) and break‐induced replication (BIR), and discovered that subtelomeric double‐stranded breaks (DSBs) are preferentially repaired by BIR despite the presence of flanking homologous sequences. Overexpression of a silencing‐deficient SIR3 mutant led to active grouping of telomeres and specifically increased the GC efficiency between subtelomeres. Thus, physical distance limits GC at subtelomeres. However, the repair efficiency between reciprocal intrachromosomal and subtelomeric sequences varies up to 15‐fold, depending on the location of the DSB, indicating that spatial proximity is not the only limiting factor for HR. EXO1 deletion limited the resection at subtelomeric DSBs and improved GC efficiency. The presence of repressive chromatin at subtelomeric DSBs also favoured recombination, by counteracting EXO1‐mediated resection. Thus, repressive chromatin promotes HR at subtelomeric DSBs by limiting DSB resection and protecting against genetic information loss.