Myron S. Ignatius
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myron S. Ignatius.
Blood | 2010
Alexandra C. H. Smith; Aubrey R. Raimondi; Chris D. Salthouse; Myron S. Ignatius; Jessica S. Blackburn; Igor V. Mizgirev; Narie Y. Storer; Jill L. O. de Jong; Aye Tin Maung Chen; Yi Zhou; Sergei Revskoy; Leonard I. Zon; David M. Langenau
Self-renewal is a feature of cancer and can be assessed by cell transplantation into immune-compromised or immune-matched animals. However, studies in zebrafish have been severely limited by lack of these reagents. Here, Myc-induced T-cell acute lymphoblastic leukemias (T-ALLs) have been made in syngeneic, clonal zebrafish and can be transplanted into sibling animals without the need for immune suppression. These studies show that self-renewing cells are abundant in T-ALL and comprise 0.1% to 15.9% of the T-ALL mass. Large-scale single-cell transplantation experiments established that T-ALLs can be initiated from a single cell and that leukemias exhibit wide differences in tumor-initiating potential. T-ALLs also can be introduced into clonal-outcrossed animals, and T-ALLs arising in mixed genetic backgrounds can be transplanted into clonal recipients without the need for major histocompatibility complex matching. Finally, high-throughput imaging methods are described that allow large numbers of fluorescent transgenic animals to be imaged simultaneously, facilitating the rapid screening of engrafted animals. Our experiments highlight the large numbers of zebrafish that can be experimentally assessed by cell transplantation and establish new high-throughput methods to functionally interrogate gene pathways involved in cancer self-renewal.
Cancer Cell | 2012
Myron S. Ignatius; Eleanor Chen; Natalie Elpek; Adam Z. Fuller; Inês M. Tenente; Ryan Clagg; Sali Liu; Jessica S. Blackburn; Corinne M. Linardic; Andrew E. Rosenberg; Petur Nielsen; Thorsten R. Mempel; David M. Langenau
Embryonal rhabdomyosarcoma (ERMS) is an aggressive pediatric sarcoma of muscle. Here, we show that ERMS-propagating potential is confined to myf5+ cells and can be visualized in live, fluorescent transgenic zebrafish. During early tumor growth, myf5+ ERMS cells reside adjacent normal muscle fibers. By late-stage ERMS, myf5+ cells are reorganized into distinct regions separated from differentiated tumor cells. Time-lapse imaging of late-stage ERMS revealed that myf5+ cells populate newly formed tumor only after seeding by highly migratory myogenin+ ERMS cells. Moreover, myogenin+ ERMS cells can enter the vasculature, whereas myf5+ ERMS-propagating cells do not. Our data suggest that non-tumor-propagating cells likely have important supportive roles in cancer progression and facilitate metastasis.
Nature Methods | 2014
Qin Tang; Nouran S. Abdelfattah; Jessica S. Blackburn; John C. Moore; Sarah Martinez; Finola E. Moore; Riadh Lobbardi; Inês M. Tenente; Myron S. Ignatius; Jason N. Berman; Robert Liwski; Yariv Houvras; David M. Langenau
Cell transplantation into adult zebrafish has lagged behind mouse models owing to the lack of immunocompromised strains. Here we have created rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft muscle, blood stem cells and various cancers. rag2E450fs mutant zebrafish are the first immunocompromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Eleanor Chen; Michael DeRan; Myron S. Ignatius; Kathryn Brooke Grandinetti; Ryan Clagg; Karin M. McCarthy; Riadh Lobbardi; Jillian Brockmann; Charles Keller; Xu Wu; David M. Langenau
Significance Embryonal rhabdomyosarcoma (ERMS) is a cancer of skeletal muscle and is one of the most common pediatric cancers of soft tissue. There is no effective treatment for patients with relapsed ERMS, with less than 50% surviving the disease. The self-renewing and molecularly defined tumor propagating cells (TPCs) drive continued tumor growth and relapse. Yet to date, drugs targeting ERMS self-renewal and differentiation of TPCs have not been identified. Our study describes a large-scale chemical screen to identify targetable pathways essential for modulating self-renewal and differentiation of ERMS and demonstrates the feasibility of inducing differentiation of TPCs in ERMS by small molecules. Embryonal rhabdomyosarcoma (ERMS) is a common pediatric malignancy of muscle, with relapse being the major clinical challenge. Self-renewing tumor-propagating cells (TPCs) drive cancer relapse and are confined to a molecularly definable subset of ERMS cells. To identify drugs that suppress ERMS self-renewal and induce differentiation of TPCs, a large-scale chemical screen was completed. Glycogen synthase kinase 3 (GSK3) inhibitors were identified as potent suppressors of ERMS growth through inhibiting proliferation and inducing terminal differentiation of TPCs into myosin-expressing cells. In support of GSK3 inhibitors functioning through activation of the canonical WNT/β-catenin pathway, recombinant WNT3A and stabilized β-catenin also enhanced terminal differentiation of human ERMS cells. Treatment of ERMS-bearing zebrafish with GSK3 inhibitors activated the WNT/β-catenin pathway, resulting in suppressed ERMS growth, depleted TPCs, and diminished self-renewal capacity in vivo. Activation of the canonical WNT/β-catenin pathway also significantly reduced self-renewal of human ERMS, indicating a conserved function for this pathway in modulating ERMS self-renewal. In total, we have identified an unconventional tumor suppressive role for the canonical WNT/β-catenin pathway in regulating self-renewal of ERMS and revealed therapeutic strategies to target differentiation of TPCs in ERMS.
Mechanisms of Development | 2007
Roopa M. Nambiar; Myron S. Ignatius; Paul D. Henion
Vertebrate gastrulation involves the coordinated movements of populations of cells. These movements include cellular rearrangements in which cells polarize along their medio-lateral axes leading to cell intercalations that result in elongation of the body axis. Molecular analysis of this process has implicated the non-canonical Wnt/Frizzled signaling pathway that is similar to the planar cell polarity pathway (PCP) in Drosophila. Here we describe a zebrafish mutant, colgate (col), which displays defects in the extension of the body axis and the migration of branchiomotor neurons. Activation of the non-canonical Wnt/PCP pathway in these mutant embryos by overexpressing DeltaNdishevelled, rho kinase2 and van gogh-like protein 2 (vangl2) rescues the extension defects suggesting that col acts as a positive regulator of the non-canonical Wnt/PCP pathway. Further, we show that col normally regulates the caudal migration of nVII facial hindbrain branchiomotor neurons and that the mutant phenotype can be rescued by misexpression of vangl2 independent of the Wnt/PCP pathway. We cloned the col locus and found that it encodes histone deacetylase1 (hdac1). Our previous results and studies by others have implicated hdac1 in repressing the canonical Wnt pathway. Here, we demonstrate novel roles for zebrafish hdac1 in activating non-canonical Wnt/PCP signaling underlying axial extension and in promoting Wnt-independent caudal migration of a subset of hindbrain branchiomotor neurons.
Development | 2013
Xiuning Le; Emily Pugach; Simone Hettmer; Narie Y. Storer; Jianing Liu; Airon A. Wills; Antony DiBiase; Eleanor Chen; Myron S. Ignatius; Kenneth D. Poss; Amy J. Wagers; David M. Langenau; Leonard I. Zon
The zebrafish is a powerful genetic model that has only recently been used to dissect developmental pathways involved in oncogenesis. We hypothesized that operative pathways during embryogenesis would also be used for oncogenesis. In an effort to define RAS target genes during embryogenesis, gene expression was evaluated in Tg(hsp70-HRASG12V) zebrafish embryos subjected to heat shock. dusp6 was activated by RAS, and this was used as the basis for a chemical genetic screen to identify small molecules that interfere with RAS signaling during embryogenesis. A KRASG12D-induced zebrafish embryonal rhabdomyosarcoma was then used to assess the therapeutic effects of the small molecules. Two of these inhibitors, PD98059 and TPCK, had anti-tumor activity as single agents in both zebrafish embryonal rhabdomyosarcoma and a human cell line of rhabdomyosarcoma that harbored activated mutations in NRAS. PD98059 inhibited MEK1 whereas TPCK suppressed S6K1 activity; however, the combined treatment completely suppressed eIF4B phosphorylation and decreased translation initiation. Our work demonstrates that the activated pathways in RAS induction during embryogenesis are also important in oncogenesis and that inhibition of these pathways suppresses tumor growth.
Nature Communications | 2016
Qin Tang; John C. Moore; Myron S. Ignatius; Inês M. Tenente; Madeline Hayes; Elaine G. Garcia; Nora Torres Yordán; Caitlin Bourque; Shuning He; Jessica S. Blackburn; A. Thomas Look; Yariv Houvras; David M. Langenau
Cancers contain a wide diversity of cell types that are defined by differentiation states, genetic mutations and altered epigenetic programmes that impart functional diversity to individual cells. Elevated tumour cell heterogeneity is linked with progression, therapy resistance and relapse. Yet, imaging of tumour cell heterogeneity and the hallmarks of cancer has been a technical and biological challenge. Here we develop optically clear immune-compromised rag2E450fs (casper) zebrafish for optimized cell transplantation and direct visualization of fluorescently labelled cancer cells at single-cell resolution. Tumour engraftment permits dynamic imaging of neovascularization, niche partitioning of tumour-propagating cells in embryonal rhabdomyosarcoma, emergence of clonal dominance in T-cell acute lymphoblastic leukaemia and tumour evolution resulting in elevated growth and metastasis in BRAFV600E-driven melanoma. Cell transplantation approaches using optically clear immune-compromised zebrafish provide unique opportunities to uncover biology underlying cancer and to dynamically visualize cancer processes at single-cell resolution in vivo.
Nature Protocols | 2011
Jessica S. Blackburn; Sali Liu; Aubrey R. Raimondi; Myron S. Ignatius; Christopher D. Salthouse; David M. Langenau
Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis.
PLOS ONE | 2013
Myron S. Ignatius; Arife Unal Eroglu; Smitha Malireddy; Glen R. Gallagher; Roopa M. Nambiar; Paul D. Henion
The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.
PLOS Genetics | 2013
Eleanor Chen; Kimberly P. Dobrinski; Kim H. Brown; Ryan Clagg; Elena J. Edelman; Myron S. Ignatius; Jin Yun Helen Chen; Jillian Brockmann; G. Petur Nielsen; Sridhar Ramaswamy; Charles Keller; Charles Lee; David M. Langenau
Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer.