Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myroslawa Miginiac-Maslow is active.

Publication


Featured researches published by Myroslawa Miginiac-Maslow.


Trends in Plant Science | 1999

Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?

Eric Ruelland; Myroslawa Miginiac-Maslow

Studies on redox signaling and light regulation of chloroplast enzymes have highlighted the importance of the ferredoxin-thioredoxin thiol-disulfide interchange cascade. Recent research has focused on the intramolecular mechanism by which the reduction status of a chloroplast enzyme affects its catalytic properties, and site-directed mutagenesis has been used to identify the regulatory cysteines involved. For some of the thiol-regulated enzymes, structure-function studies have revealed that the complex conformational changes that occur might be associated with disulfide isomerization and auto-inhibition. Transgenic approaches indicate that this regulation constitutes a rapid means to adjust enzyme activity to metabolic needs.


Plant Physiology | 2004

Characterization of Plastidial Thioredoxins from Arabidopsis Belonging to the New y-Type

Valérie Collin; Petra Lamkemeyer; Myroslawa Miginiac-Maslow; Masakazu Hirasawa; David B. Knaff; Karl-Josef Dietz; Emmanuelle Issakidis-Bourguet

The plant plastidial thioredoxins (Trx) are involved in the light-dependent regulation of many enzymatic activities, owing to their thiol-disulfide interchange activity. Three different types of plastidial Trx have been identified and characterized so far: the m-, f-, and x-types. Recently, a new putative plastidial type, the y-type, was found. In this work the two isoforms of Trx y encoded by the nuclear genome of Arabidopsis (Arabidopsis thaliana) were characterized. The plastidial targeting of Trx y has been established by the expression of a Trx∷GFP fusion protein. Then both isoforms were produced as recombinant proteins in their putative mature forms and purified to characterize them by a biochemical approach. Their ability to activate two plastidial light-regulated enzymes, NADP-malate dehydrogenase (NADP-MDH) and fructose-1,6-bisphosphatase, was tested. Both Trx y were poor activators of fructose-1,6-bisphosphatase and NADP-MDH; however, a detailed study of the activation of NADP-MDH using site-directed mutants of its regulatory cysteines suggested that Trx y was able to reduce the less negative regulatory disulfide but not the more negative regulatory disulfide. This property probably results from the fact that Trx y has a less negative redox midpoint potential (−337 mV at pH 7.9) than thioredoxins f and m. The y-type Trxs were also the best substrate for the plastidial peroxiredoxin Q. Gene expression analysis showed that Trx y2 was mainly expressed in leaves and induced by light, whereas Trx y1 was mainly expressed in nonphotosynthetic organs, especially in seeds at a stage of major accumulation of storage lipids.


The EMBO Journal | 1999

Redox signalling in the chloroplast: structure of oxidized pea fructose‐1,6‐bisphosphate phosphatase

Mohammed Chiadmi; Alda Navaza; Myroslawa Miginiac-Maslow; Jean Pierre Jacquot; Jacqueline Cherfils

Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low‐activity form of chloroplastic fructose‐1,6‐bisphosphate phosphatase (FBPase), one of the four enzymes of the Calvin cycle whose activity is redox‐regulated by light. The regulation is of allosteric nature, with a disulfide bridge promoting the disruption of the catalytic site across a distance of 20 Å. Unexpectedly, regulation of plant FBPases by thiol–disulfide interchange differs in every respect from the regulation of mammalian gluconeogenic FBPases by AMP. We also report a second crystal form of oxidized FBPase whose tetrameric structure departs markedly from D2 symmetry, a rare event in oligomeric structures, and the structure of a constitutively active mutant that is unable to form the regulatory disulfide bridge. Altogether, these structures provide a structural basis for redox regulation in the chloroplast.


Molecular Plant | 2009

H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H(2)O(2), but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H(2)O(2)-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO(2) for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO(2) or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H(2)O(2) signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.


FEBS Letters | 2006

Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG

Myriam Seemann; Bernadette Tse Sum Bui; Murielle Wolff; Myroslawa Miginiac-Maslow; Michel Rohmer

In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2‐C‐methyl‐d‐erythritol 2,4‐cyclodiphosphate into (E)‐4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate. This reaction requires a double one‐electron transfer involving a [4Fe–4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide. This is in sharp contrast with the bacterial Escherichia coli GcpE, which requires flavodoxin/flavodoxin reductase and NADPH as reducing system and represents the first proof that the electron flow from photosynthesis can directly act in phototrophic organisms as reducer in the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway, most probably via ferredoxin, in the absence of any reducing cofactor. In the dark, the plant GcpE catalysis requires in addition of ferredoxin NADP+/ferredoxin oxido‐reductase and NADPH as electron shuttle.


FEBS Journal | 2007

The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation

Mirko Zaffagnini; Laure Michelet; Christophe Marchand; Francesca Sparla; Paulette Decottignies; Pierre Le Maréchal; Myroslawa Miginiac-Maslow; Graham Noctor; Paolo Trost; Stéphane D. Lemaire

In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post‐translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A4‐glyceraldehyde‐3‐phosphate dehydrogenase (A4‐GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H2O2. The formation of a mixed disulfide between glutathione and A4‐GAPDH resulted in the inhibition of enzyme activity. A4‐GAPDH was also inhibited by oxidants such as H2O2. However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the AnBn‐GAPDH isozyme in either A2B2 or A8B8 conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3‐bisphosphoglycerate. In the presence of 1,3‐bisphosphoglycerate, A4‐GAPDH was fully protected from either oxidation or glutathionylation. Site‐directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active‐site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A4‐GAPDH from irreversible oxidation under stress.


Photosynthesis Research | 2006

Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore

Laure Michelet; Mirko Zaffagnini; Vincent Massot; Eliane Keryer; Hélène Vanacker; Myroslawa Miginiac-Maslow; Emmanuelle Issakidis-Bourguet; Stéphane D. Lemaire

Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.


FEBS Letters | 1997

Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase

Jean-Pierre Jacquot; Javier Lopez-Jaramillo; Myroslawa Miginiac-Maslow; Stéphane D. Lemaire; Jacqueline Cherfils; Ana Chueca; Julio Lopez-Gorge

Chloroplastic fructose‐1,6‐bisphosphatases are redox regulatory enzymes which are activated by the ferredoxin thioredoxin system via the reduction/isomerization of a critical disulfide bridge. All chloroplastic sequences contain seven cysteine residues, four of which are located in, or close to, an amino acid insertion region of approximately 17 amino acids. In order to gain more information on the nature of the regulatory site, five cysteine residues (Cys49, Cys153, Cys173, Cys178 and Cys190) have been modified individually into serine residues by site‐directed mutagenesis. While mutations C173S and C178S strongly affected the redox regulatory properties of the enzyme, the most striking effect was observed with the C153S mutant which became permanently active and redox independent. On the other hand, the C190S mutant retained most of the properties of the wild‐type enzyme (except that it could now also be partially activated by the NADPH/NTR/thioredoxin h system). Finally, the C49S mutant is essentially identical to the wild‐type enzyme. These results are discussed in the light of recent crystallographic data obtained on spinach FBPase [Villeret et al. (1995) Biochemistry 34, 4299–4306].


Molecular Plant | 2009

Prompt and Easy Activation by Specific Thioredoxins of Calvin Cycle Enzymes of Arabidopsis thaliana Associated in the GAPDH/CP12/PRK Supramolecular Complex

Lucia Marri; Mirko Zaffagnini; Valérie Collin; Emmanuelle Issakidis-Bourguet; Stéphane D. Lemaire; Paolo Pupillo; Francesca Sparla; Myroslawa Miginiac-Maslow; Paolo Trost

The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.


FEBS Letters | 2003

Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii

Stéphane D. Lemaire; V. Collin; Eliane Keryer; A. Quesada; Myroslawa Miginiac-Maslow

The sequencing of the Arabidopsis genome revealed a multiplicity of thioredoxins (TRX), ubiquitous protein disulfide oxido‐reductases. We have analyzed the TRX family in the genome of the unicellular green alga Chlamydomonas reinhardtii and identified eight different thioredoxins for which we have cloned and sequenced the corresponding cDNAs. One of these TRXs represents a new type that we named TRX y. This most probably chloroplastic TRX is highly conserved in photosynthetic organisms. The biochemical characterization of the recombinant protein shows that it exhibits a thermal stability profile and specificity toward target enzymes completely different from those of TRXs characterized so far.

Collaboration


Dive into the Myroslawa Miginiac-Maslow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuelle Issakidis-Bourguet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Ruelland

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge