Myrthe Otsen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myrthe Otsen.
Heredity | 2003
Isaac J. Nijman; Myrthe Otsen; Edward L. C. Verkaar; C. de Ruijter; E. Hanekamp; Joel W. Ochieng; S. Shamshad; J.E.O. Rege; Olivier Hanotte; M.W. Barwegen; T. Sulawati; Johannes A. Lenstra
Hybridization between wild and domestic bovine species occurs worldwide either spontaneously or by organized crossing. We have analysed hybridization of banteng (Bos javanicus) and zebu (Bos indicus) in south-east Asian cattle using mitochondrial DNA (PCR-RFLP and sequencing), AFLP, satellite fragment length polymorphisms (SFLP or PCR-RFLP of satellite DNA) and microsatellite genotyping. The Indonesian Madura zebu breed is reputed to be of hybrid zebu–banteng origin, but this has never been documented and Bali cattle are considered to be a domesticated form of banteng. The banteng mitochondrial type was found in all animals sampled on the isle of Bali, Indonesia, but only in 35% of the animals from a Malaysian Bali-cattle population. The Madura animals also carried mitochondrial DNA of either zebu and banteng origin. In both populations, zebu introgression was confirmed by AFLP and SFLP. Microsatellite analysis of the Malaysian Bali population revealed for 12 out of 15 loci screened, Bali-cattle-specific alleles, several of which were also found in wild banteng animals. The tools we have described are suitable for the detection of species in introgression studies, which are essential for the genetic description of local breeds and the preservation of their economic and cultural value.
Heredity | 2002
Jacob B. Buntjer; Myrthe Otsen; Isaac J. Nijman; M T R Kuiper; Johannes A. Lenstra
The Bovini species comprise both domestic and wild cattle species. Published phylogenies of this tribe based on mitochondrial DNA contain anomalies, while nuclear sequences show only low variation. We have used amplified fragment length polymorphism (AFLP) fingerprinting in order to detect variation in loci distributed over the nuclear genome. Computer-assisted scoring of electrophoretic fingerprinting patterns yielded 361 markers, which provided sufficient redundancy to suppress stochastic effects of intraspecies polymorphisms and length homoplasies (comigration of non-homologous fragments). Tree reconstructions reveal three clusters: African buffalo with water buffalo, ox with zebu, and bison with wisent. Similarity values suggest a clustering of gaur and banteng, but bifurcating clustering algorithms did not assign consistent positions to these species and yak. We propose that because of shared polymorphisms and reticulations, tree topologies are only partially adequate to represent the phylogeny of the Bovini. Principal-coordinate analysis positions zebu between a gaur/banteng cluster and taurine cattle. This correlates with the region of origin of these species and suggests that genomic distances between the cattle species have been influenced by genetic exchange between neighbouring ancestral populations.
Molecular and Biochemical Parasitology | 2000
Ruurdtje Hoekstra; Allerdien Visser; Myrthe Otsen; Joop Tibben; Johannes A. Lenstra; Marleen H. Roos
Expressed sequence tags from the parasitic nematode Haemonchus contortus were generated in order to identify anchor loci for comparative mapping between nematode genomes and candidate targets for future control measures. In total, 370 SL1 trans-spliced cDNAs from different developmental stages representing 195 different genes were partially sequenced. From these expressed sequence tags 50% were similar to genes with a known or predicted function and 19% were similar to nematode sequences with no ascribed function. From the first, free-living L1 and L3 stages relatively many cDNAs matched to housekeeping genes, and 11% (L1) or 23% (L3) of the encoded proteins were predicted to contain signal peptides. In contrast, no function could be ascribed to most of the cDNAs from the early L5 and adult parasitic stages, but for 30% (L5) or 55% (adult) of the encoded proteins a signal sequence was predicted. This limited analysis suggests that during the transition from the free-living to parasitic stages gene expression shifts towards the synthesis of less conserved extracellular proteins. These proteins offer the best perspectives for vaccine development and the development of anthelmintic drugs. In contrast, cDNAs from the first larval stages may be most suitable for comparative mapping with the free-living nematode Caenorhabditis elegans.
International Journal for Parasitology | 2001
Myrthe Otsen; Ruurdtje Hoekstra; Martijn E. Plas; Jacob B. Buntjer; Johannes A. Lenstra; Marleen H. Roos
For the first time we used amplified fragment length polymorphism on individual nematode parasites to analyse the genetic diversity between and within isolates during consecutive stages of increased benzimidazole resistance and of increased levamisole resistance of Haemonchus contortus. The genetic diversity of the H. contortus genome turned out to be unusually high, within and between the isolates. The difference between individuals of an isolate could be as high as between individuals of two different mammalian species that do not interbreed. During benzimidazole selection the genetic constitution of the population was changed, but did not lead to a decrease in the genetic diversity. The selection for levamisole resistance resulted in a limited reduction of the genetic diversity only after the first selection step. The extensive genetic diversity apparently has allowed a fast and flexible response of H. contortus to drug selection as shown by the appearance of drug resistant isolates. This selection however has little or no effect on the extent of the genetic diversity of these resistant isolates. Implications for more sustainable control methods are discussed.
Molecular and Biochemical Parasitology | 2000
Myrthe Otsen; Martijn E. Plas; Johannes A. Lenstra; Marleen H. Roos; Ruurdtje Hoekstra
The alarming development of anthelmintic resistance in important gastrointestinal nematode parasites of man and live-stock is caused by selection for specific genotypes. In order to provide genetic tools to study the nematode populations and the consequences of anthelmintic treatment, we isolated and sequenced 59 microsatellites of the sheep and goat parasite Haemonchus contortus. These microsatellites consist typically of 2-10 tandems CA/GT repeats that are interrupted by sequences of 1-10 bp. A predominant cause of the imperfect structure of the microsatellites appeared mutations of G/C bp in the tandem repeat. About 44% of the microsatellites were associated with the HcREP1 direct repeat, and it was demonstrated that a generic HcREP1 primer could be used to amplify HcREP1-associated microsatellites. Thirty microsatellites could be typed by polymerase chain reaction (PCR) of which 27 were polymorphic. A number of these markers were used to detect genetic contamination of an experimental inbred population. The microsatellites may also contribute to the genetic mapping of drug resistance genes.
Journal of Helminthology | 1998
Marleen H. Roos; Ruurdtje Hoekstra; Martijn E. Plas; Myrthe Otsen; Johannes A. Lenstra
Polymorphic molecular markers are being identified to characterize the genomes of parasitic nematodes. The aim is to construct a map with markers evenly spread over the six chromosomes. With such a map, regions can be identified that are under selection pressure when attempts are being made to eradicate worms, be it by drugs, vaccines or genetic resistance in the sheep. Several types of markers have been developed, microsatellites, transposon-associated markers, amplified fragment length polymorphism (AFLP) and expressed sequence tag (EST) markers. Linkage groups can be constructed using several genetic crosses between inbred and drug resistant strains. EST markers will be especially important for comparative mapping with the genome of Caenorhabditis elegans, and therefore localization of the linkage group on a chromosome. It will then be possible to identify functional genes close to markers that have changed allele frequencies under selection pressure and identify the mechanisms of resistance to parasite control.
Molecular and Biochemical Parasitology | 1999
Ruurdtje Hoekstra; Myrthe Otsen; Johannes A. Lenstra; Marleen H. Roos
Hctc1, a member of the Tc1-family of transposable elements was isolated from the parasitic nematode Haemonchus contortus. Hctc1 is 1590 bp long, is flanked by 55 bp inverted repeats and carries a single open reading frame of a 340 amino acid transposase-like protein. Hctc1 is similar to Tc1 of Caenorhabditis elegans and elements Tcb1 and Tcb2 of Caenorhabditis briggsae in the inverted terminal repeats, the open reading frame, as well as the target insertion sequence. Furthermore, the copy number of Hctc1 is comparable with the Tc1 copy number in low copy strains of C. elegans. The sequence of Hctc1 is highly variable in H. contortus due to deletions, insertions and point mutations, with at least five distinct length variants of Hctc1. Most of the Hctc1 variation was within rather than between H. contortus populations. The high level of sequence variation is probably due to variation generally found for members of the Tc1-family, as well as a high background level of genetic variation of H. contortus.
Mammalian Genome | 1995
Myrthe Otsen; M. den Bieman; Eric S. Winer; Howard J. Jacob; Josiane Szpirer; Claude Szpirer; K. Bender; L.F.M. van Zutphen
Genetic monitoring is an essential component of colony management and for the rat has been accomplished primarily by using immunological and biochemical markers. Here, we report that simple sequence length polymorphisms (SSLPs) are a faster and more economical way of monitoring inbred strains of rats. We characterized 61 inbred strains of rats, using primer pairs for 37 SSLPs. Each of these loci appeared to be highly polymorphic, with the number of alleles per locus ranging between 3 and 14 and, as a result, all the 61 inbred strains tested in this study could be provided with a unique strain profile. These strain profiles are also used for estimating the degree of similarity between strains. This information may provide the rationale in selecting strains for genetic crosses or for other specific purposes.
Journal of Clinical Microbiology | 1999
Paul H. M. Savelkoul; H.J.M. Aarts; J. de Haas; L. Dijkshoorn; Birgitta Duim; Myrthe Otsen; J.L.W. Rademaker; Leo M. Schouls; Johannes A. Lenstra
International Journal for Parasitology | 2004
Marleen H. Roos; Myrthe Otsen; Ruurdtje Hoekstra; Jetty G. Veenstra; Johannes A. Lenstra