Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myung Chul Choi is active.

Publication


Featured researches published by Myung Chul Choi.


Journal of Applied Crystallography | 2008

Scatterless hybrid metal–single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction

Youli Li; Roy Beck; Tuo Huang; Myung Chul Choi; Morito Divinagracia

A simple hybrid design has been developed to produce practically scatterless aperture slits for small-angle X-ray scattering and high-resolution X-ray diffraction. The hybrid slit consists of a rectangular single-crystal substrate (e.g. Si or Ge) bonded to a high-density metal base with a large taper angle (> 10°). The beam-defining single-crystal tip is oriented far from any Bragg peak position with respect to the incident beam and hence produces none of the slit scattering commonly associated with conventional metal slits. It has been demonstrated that the incorporation of the scatterless slits leads to a much simplified design in small-angle X-ray scattering instruments employing only one or two apertures, with dramatically increased intensity (a threefold increase observed in the test setup) and improved low-angle resolution.


Biophysical Journal | 2009

Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study.

Myung Chul Choi; Uri Raviv; Herb P. Miller; Michelle Gaylord; E. Kiris; D. Ventimiglia; Daniel J. Needleman; Mahn Won Kim; Les Wilson; Stuart C. Feinstein; Cyrus R. Safinya

Microtubules (MTs), a major component of the eukaryotic cytoskeleton, are 25 nm protein nanotubes with walls comprised of assembled protofilaments built from alphabeta heterodimeric tubulin. In neural cells, different isoforms of the microtubule-associated-protein (MAP) tau regulate tubulin assembly and MT stability. Using synchrotron small angle x-ray scattering (SAXS), we have examined the effects of all six naturally occurring central nervous system tau isoforms on the assembly structure of taxol-stabilized MTs. Most notably, we found that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius R(MT) of MTs with increasing Phi, the tau/tubulin-dimer molar ratio. Within experimental scatter, the change in R(MT) seems to be isoform independent. Significantly, R(MT) was observed to rapidly increase for 0 < Phi < 0.2 and saturate for Phi between 0.2-0.5. Thus, a local shape distortion of the tubulin dimer on tau binding, at coverages much less than a monolayer, is spread collectively over many dimers on the scale of protofilaments. This implies that tau regulates the shape of protofilaments and thus the spontaneous curvature C(o)(MT) of MTs leading to changes in the curvature C(MT) (=1/R(MT)). An important biological implication of these findings is a possible allosteric role for tau where the tau-induced shape changes of the MT surface may effect the MT binding activity of other MAPs present in neurons. Furthermore, the results, which provide insight into the regulation of the elastic properties of MTs by tau, may also impact biomaterials applications requiring radial size-controlled nanotubes.


Langmuir | 2009

Confined self-assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains).

Yun-Ho Kim; Dong-Ki Yoon; Myung Chul Choi; Hyeon-Su Jeong; Mahn Won Kim; Oleg D. Lavrentovich; Hee-Tae Jung

A smectic liquid crystal (LC) containing a rigid biphenyl group and semifluorinated chains exhibits a high density of toric focal conic domains (TFCDs) arranged in an ordered array when confined within a microchannel. The formation of the TFCDs is strongly influenced by the width (W) and depth (h) of the confined microchannels, most importantly, by the channel depth. We studied a broad variety of microchannels, with varying width in the range of 3-200 mum and depth in the range of 2-10 mum. The radius of the TFCDs increases with increases in the width until the saturated radius is achieved, which is determined by the depth of the channel. We used the elastic-anchoring model of TFCD formation to explain the experimental observations. The model allows one to trace the dependence of the TFCD radius on the channel depth h, to explain why the TFCDs do not form in channels that are too shallow or too narrow.


Scientific Reports | 2013

Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer

Sangyeon Cho; Jaeduck Jang; Chaeyeon Song; Heeyoung Lee; Prabhakar Ganesan; Tae-Young Yoon; Mahn Won Kim; Myung Chul Choi; Hyotcherl Ihee; Won Do Heo; YongKeun Park

Despite the recent development of several super-resolution fluorescence microscopic techniques, there are still few techniques that can be readily employed in conventional imaging systems. We present a very simple, rapid, general and cost-efficient super-resolution imaging method, which can be directly employed in a simple fluorescent imaging system with general fluorophores. Based on diffusion-assisted Förster resonance energy transfer (FRET), fluorescent donor molecules that label specific target structures can be stochastically quenched by diffusing acceptor molecules, thereby temporally separating otherwise spatially overlapped fluorescence signals and allowing super-resolution imaging. The proposed method provides two- to three-fold-enhancement in spatial resolution, a significant optical sectioning property, and favorable temporal resolution in live-cell imaging. We demonstrate super-resolution live-cell dynamic imaging using general fluorophores in a standard epi-fluorescence microscope with light-emitting diode (LED) illumination. Due to the simplicity of this approach, we expect that the proposed method will prove an attractive option for super-resolution imaging.


Langmuir | 2010

Unconventional salt trend from soft to stiff in single neurofilament biopolymers.

Roy Beck; Joanna Deek; Myung Chul Choi; Taiji Ikawa; Osamu Watanabe; Erwin Frey; P. Pincus; Cyrus R. Safinya

We present persistence length measurements on neurofilaments (NFs), an intermediate filament with protruding side arms, of the neuronal cytoskeleton. Tapping mode atomic force microscopy enabled us to visualize and trace at subpixel resolution photoimmobilized NFs, assembled at various subunit protein ratios, thereby modifying the side-arm length and chain density charge distribution. We show that specific polyampholyte sequences of the side arms can form salt-switchable intrafilament attractions that compete with the net electrostatic and steric repulsion and can reduce the total persistence length by half. The results are in agreement with present X-ray and microscopy data yet present a theoretical challenge for polyampholyte interchain interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules.

Peter J. Chung; Myung Chul Choi; Herbert P. Miller; H. Eric Feinstein; Uri Raviv; Youli Li; Leslie Wilson; Stuart C. Feinstein; Cyrus R. Safinya

Significance The microtubule-associated protein Tau is known to stabilize microtubules against depolymerization in neuronal axons, ensuring proper trafficking of organelles along microtubules in long axons. Abnormal interactions between Tau and microtubules are implicated in Alzheimer’s disease and other neurodegenerative disorders. We directly measured forces between microtubules coated with Tau isoforms by synchrotron small-angle X-ray scattering of reconstituted Tau–microtubule mixtures under osmotic pressure (mimicking molecular crowding in cells). We found that select Tau isoforms fundamentally alter forces between microtubules by undergoing a conformational change on microtubule surfaces at a coverage indicative of an unusually extended Tau state. This gain of function by longer isoforms in imparting steric stabilization to microtubules is essential in preventing microtubule aggregation and loss of function in organelle trafficking. Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment.


Nature Materials | 2014

Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch

Miguel A. Ojeda-Lopez; Daniel J. Needleman; Chae Yeon Song; Avi Ginsburg; Phillip Kohl; Youli Li; Herbert P. Miller; Leslie Wilson; Uri Raviv; Myung Chul Choi; Cyrus R. Safinya

Bundles of taxol-stabilized microtubules (MTs) – hollow tubules comprised of assembled αβ-tubulin heterodimers – spontaneously assemble above a critical concentration of tetravalent spermine and are stable over long times at room temperature. Here we report that at concentrations of spermine several-fold higher the MT bundles (BMT) quickly become unstable and undergo a shape transformation to bundles of inverted tubulin tubules (BITT), the outside surface of which corresponds to the inner surface of the BMT tubules. Using transmission electron microscopy and synchrotron small-angle x-ray scattering, we quantitatively determined both the nature of the BMT to BITT transformation pathway, which results from a spermine-triggered conformation switch from straight to curved in the constituent taxol-stabilized tubulin oligomers, and the structure of the BITT phase, which is formed of tubules of helical tubulin oligomers. Inverted tubulin tubules provide a platform for studies requiring exposure and availability of the inside, luminal surface of MTs to MT-targeted-drugs and MT-associated-proteins.


Advanced Materials | 2011

Nanoscale Assembly in Biological Systems: From Neuronal Cytoskeletal Proteins to Curvature Stabilizing Lipids

Cyrus R. Safinya; Uri Raviv; Daniel J. Needleman; Alexandra Zidovska; Myung Chul Choi; Miguel A. Ojeda-Lopez; Kai K. Ewert; Youli Li; Herbert P. Miller; Joel Quispe; Bridget Carragher; Clinton S. Potter; Mahn Won Kim; Stuart C. Feinstein; Leslie Wilson

The review will describe experiments inspired by the rich variety of bundles and networks of interacting microtubules (MT), neurofilaments, and filamentous-actin in neurons where the nature of the interactions, structures, and structure-function correlations remain poorly understood. We describe how three-dimensional (3D) MT bundles and 2D MT bundles may assemble, in cell free systems in the presence of counter-ions, revealing structures not predicted by polyelectrolyte theories. Interestingly, experiments reveal that the neuronal protein tau, an abundant MT-associated-protein in axons, modulates the MT diameter providing insight for the control of geometric parameters in bio- nanotechnology. In another set of experiments we describe lipid-protein-nanotubes, and lipid nano-tubes and rods, resulting from membrane shape evolution processes involving protein templates and curvature stabilizing lipids. Similar membrane shape changes, occurring in cells for the purpose of specific functions, are induced by interactions between membranes and proteins. The biological materials systems described have applications in bio-nanotechnology.


Science Advances | 2017

Holographic deep learning for rapid optical screening of anthrax spores

YoungJu Jo; Sangjin Park; JaeHwang Jung; Jonghee Yoon; Hosung Joo; Min-Hyeok Kim; Suk-Jo Kang; Myung Chul Choi; Sang Yup Lee; YongKeun Park

A synergistic application of holography and deep learning enables rapid optical screening of anthrax spores and other pathogens. Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens.


Langmuir | 2014

Surface charge regulation of carboxyl terminated polystyrene latex particles and their interactions at the oil/water interface.

KyuHan Kim; Kyuheong Park; Gahee Kim; Hyunjung Kim; Myung Chul Choi; Siyoung Q. Choi

We study electrostatic interactions of polystyrene particles at an oil/water interface controlled by a chemical reaction of carboxylate surface functional groups. By replacing the carboxyl functional groups with hydrocarbon chains using the well-known EDC (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide) coupling reaction, the surface charge density decreases while the hydrophobicity of the colloid surface increases. Direct visualization of the particle-laden interface reveals that, depending on the extent of hydrocarbon coupling, the strength of the electrostatic repulsion can be regulated: the repulsive interaction increases with the reaction, removing aggregates, but rapidly decreases if the reaction proceeds too much, forming a large aggregation. This simple reaction, thus, dramatically changes the structures of the colloidal monolayers at the oil/water interface. We conclude that such structural change is the result of change of the repulsive interactions from the oil phase, although interactions in the water phase are also changed slightly.

Collaboration


Dive into the Myung Chul Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youli Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Leslie Wilson

University of California

View shared research outputs
Top Co-Authors

Avatar

Uri Raviv

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Chung

University of California

View shared research outputs
Top Co-Authors

Avatar

Chaeyeon Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge