Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myung Haing Cho is active.

Publication


Featured researches published by Myung Haing Cho.


Toxicological Sciences | 2009

Subchronic Inhalation Toxicity of Silver Nanoparticles

Jae Hyuck Sung; Jun Ho Ji; Jung Duck Park; Jin Uk Yoon; Dae Sung Kim; Ki Soo Jeon; Moon Yong Song; Jayoung Jeong; Beom Seok Han; Jeong Hee Han; Yong Hyun Chung; Hee Kyung Chang; Ji Hyun Lee; Myung Haing Cho; Bruce Kelman; Il Je Yu

The subchronic inhalation toxicity of silver nanoparticles was studied in Sprague-Dawley rats. Eight-week-old rats, weighing approximately 253.2 g (males) and 162.6 g (females), were divided into four groups (10 rats in each group): fresh-air control, low dose (0.6 x 10(6) particle/cm(3), 49 microg/m(3)), middle dose (1.4 x 10(6) particle/cm(3), 133 microg/m(3)), and high dose (3.0 x 10(6) particle/cm(3), 515 microg/m(3)). The animals were exposed to silver nanoparticles (average diameter 18-19 nm) for 6 h/day, 5 days/week, for 13 weeks in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and pulmonary function tests were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and the organ weights were measured. Bile-duct hyperplasia in the liver increased dose dependently in both the male and female rats. Histopathological examinations indicated dose-dependent increases in lesions related to silver nanoparticle exposure, including mixed inflammatory cell infiltrate, chronic alveolar inflammation, and small granulomatous lesions. Target organs for silver nanoparticles were considered to be the lungs and liver in the male and female rats. No observable adverse effect level of 100 microg/m(3) is suggested from the experiments.


Inhalation Toxicology | 2008

Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility.

Jeong Hee Han; Eun Jung Lee; Ji Hyun Lee; Kang Pyo So; Young Hee Lee; Gwi Nam Bae; Seung-Bok Lee; Jun Ho Ji; Myung Haing Cho; Il Je Yu

With the increased production and widespread use of multiwalled carbon nanotubes (MWCNTs), human and environmental exposure to MWCNTs is inevitably increasing. Therefore, this study monitored the possible exposure to MWCNT release in a carbon nanotube research laboratory. To estimate the potential exposure of researchers and evaluate the improvement of the workplace environment after the implementation of protective control measures, personal and area monitoring were conducted in an MWCNT research facility where the researchers handled unrefined materials. The number, composition, and aspect ratio of MWCNTs were measured using scanning transmission electron microscopy with an energy-dispersive x-ray analyzer. The gravimetric concentrations of total dust before any control measures ranged from 0.21 to 0.43 mg/m3, then decreased to a nondetectable level after implementing the control measures. The number of MWCNTs in the samples obtained from the MWCNT blending laboratory ranged from 172.9 to 193.6 MWCNTs/cc before the control measures, and decreased to 0.018–0.05 MWCNTs/cc after the protective improvements. The real-time monitoring of aerosol particles provided a signature of the MWCNTs released from the blending equipment in laboratory C. In particular, the number size response of an aerodynamic particle sizer with a relatively high concentration in the range of 2 to 3 μ m in aerodynamic diameter revealed the evidence of MWCNT exposure. The black carbon mass concentration also increased significantly during the MWCNT release process. Therefore, the present study suggests that the conventional industrial hygiene measures can significantly reduce exposure to airborne MWCNTs and other particulate materials in a nano research facility.


Journal of Veterinary Science | 2006

Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells

Jun Sung Kim; Tae Jong Yoon; Kyeong Nam Yu; Mi Suk Noh; Min-Ah Woo; Byung Geol Kim; Kee Ho Lee; Byung Hyuk Sohn; Seung Bum Park; Jin Kyu Lee; Myung Haing Cho

Biocompatible silica-overcoated magnetic nanoparticles containing an organic fluorescence dye, rhodamine B isothiocyanate (RITC), within a silica shell [50 nm size, MNP@SiO2(RITC)s] were synthesized. For future application of the MNP@SiO2(RITC)s into diverse areas of research such as drug or gene delivery, bioimaging, and biosensors, detailed information of the cellular uptake process of the nanoparticles is essential. Thus, this study was performed to elucidate the precise mechanism by which the lung cancer cells uptake the magnetic nanoparticles. Lung cells were chosen for this study because inhalation is the most likely route of exposure and lung cancer cells were also found to uptake magnetic nanoparticles rapidly in preliminary experiments. The lung cells were pretreated with different metabolic inhibitors. Our results revealed that low temperature disturbed the uptake of magnetic nanoparticles into the cells. Metabolic inhibitors also prevented the delivery of the materials into cells. Use of TEM clearly demonstrated that uptake of the nanoparticles was mediated through endosomes. Taken together, our results demonstrate that magnetic nanoparticles can be internalized into the cells through an energy-dependent endosomal-lysosomal mechanism.


Cancer Research | 2004

Aerosol Delivery of Glucosylated Polyethylenimine/Phosphatase and Tensin Homologue Deleted on Chromosome 10 Complex Suppresses Akt Downstream Pathways in the Lung of K-ras Null Mice

Hyun Woo Kim; Inkyu Park; Chong-Su Cho; Kee Ho Lee; George R. Beck; Nancy H. Colburn; Myung Haing Cho

Difficulties in achieving long-term survival of lung cancer patients treated with conventional therapies suggest that novel approaches are required. Although several genes have been investigated for antitumor activities using gene delivery, problems surrounding the methods used such as efficiency, specificity, and toxicity hinder its application as an effective therapy. This has lead to the re-emergence of aerosol gene delivery as a noninvasive approach to lung cancer therapy. In this study, glucosylated conjugated polyethylenimine (glucosylated PEI) was used as carrier. After confirming the efficiency of glucosylated PEI carriers in lungs, the potential effects of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene on Akt downstream pathways were investigated. Aerosol containing glucosylated PEI and recombinant plasmid pcDNA3.0-PTEN complex was delivered into K-ras null lung cancer model mice through a nose-only inhalation system. Investigation of proteins in the phosphatidylinositol 3′-kinase/Akt signaling pathway in PTEN-delivered mouse lung revealed that the PTEN protein was highly expressed, whereas the protein levels of PDK1, total Akt1, phospho-(Thr-308)-Akt, phospho-(Ser-2448)-mTOR, p70S6K, and 4E-BP1 were decreased to varying degrees. Additionally, the kinase activities of both Akt and mTOR were suppressed. Finally, apoptosis was detected in PTEN-delivered mouse lung by terminal deoxynucleotidyltransferase-mediated nick end labeling assay, suggesting that our aerosol PTEN delivery is capable of functionally altering cell phenotype in vivo. In summary, Western blot analysis, kinase assays, immunohistochemistry, and terminal deoxynucleotidyltransferase-mediated nick end labeling assays suggest that our aerosol gene delivery technique is compatible with in vivo gene delivery and can be applied as a noninvasive gene therapy.


Journal of Gene Medicine | 2008

Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethylenimine in vitro and in vivo

Mi Ran Park; Hyon Woo Kim; Chang Sun Hwang; Ki Ok Han; Yun Jaie Choi; Soo Chang Song; Myung Haing Cho; Chong-Su Cho

Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary.


Toxicology in Vitro | 2014

Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells.

Eun Jung Park; Dong Hyuk Choi; Younghun Kim; Eun Woo Lee; Jaewhan Song; Myung Haing Cho; Jae Ho Kim; Sang-Wook Kim

Magnetic nanoparticles have been widely used in a broad range of disciplines owing to their unique properties. However, many unexpected risks have been reported in their use. In this study, we investigated the uptake process and toxic mechanism of magnetic iron oxide nanoparticles (M-FeNPs) using RAW264.7 cells, a murine peritoneal macrophage cell line. M-FeNPs markedly enhanced the mobility of cells. At 24h after exposure, M-FeNPs were located freely in the cytosol or within autolysosomes containing various organelles, especially the endoplasmic reticulum (ER). Cell viability decreased in a dose-dependent manner in conjunction with the arrest in S phase. ATP production also rapidly decreased together with mitochondrial damage, the number of cells that generate ROS increased, and the secretions of pro-inflammatory cytokines enhanced. The levels of oxidative stress- and ER stress-related genes were up-regulated, whereas the levels of transcription-related genes were down-regulated. Additionally, the levels of autophagy- and ER stress-related proteins increased, and the number of apoptotic cells increased with time. We also investigated the function of the autolysosome in the cellular response after exposure of M-FeNPs. When cells were exposed to M-FeNPs for 24h with BaFA1 pretreatment, the plasma membrane disintegrated, cytosolic components disappeared, and the number of apoptotic cells significantly increased. Taken together, these results show that M-FeNPs induce autophagy preceding apoptosis through mitochondrial dysfunction and ER stress in RAW264.7 cells. Furthermore, blocking of autolysosome formation may accelerate apoptotic cell death and ER stress.


Neurotoxicology | 2003

Manganese Distribution in Brains of Sprague Dawley Rats after 60 Days of Stainless Steel Welding-Fume Exposure

Il Je Yu; Jung Duck Park; Eon Sub Park; Kyung Seuk Song; Kuy Tae Han; Jeong Hee Han; Yong Hyun Chung; Byung-Sun Choi; Kyu Hyuck Chung; Myung Haing Cho

Welders working in a confined space, as in the shipbuilding industry, are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as the movement of manganese into specific brain regions has not yet been clearly established. Accordingly, to investigate the distribution of manganese in the brain after welding-fume exposure, male Sprague-Dawley rats were exposed to welding fumes generated from manual metal arc-stainless steel (MMA-SS) at concentrations of 63.6 +/- 4.1 mg/m(3) (low dose, containing 1.6 mg/m(3) Mn) and 107.1 +/- 6.3 mg/m(3) (high dose, containing 3.5 mg/m(3) Mn) total suspended particulate (TSP) for 2 h per day in an inhalation chamber over a 60-day period. Blood, brain, lung, and liver samples were collected after 2 h, 15, 30, and 60 days of exposure and the tissues analyzed for their manganese concentrations using an atomic absorption spectrophotometer. Although dose- and time-dependent increases in the manganese concentrations were found in the lungs and livers of the rats exposed for 60 days, only slight manganese increases were observed in the blood during this period. Major statistically significant increases in the brain manganese concentrations were detected in the cerebellum after 15 days of exposure and up until 60 days. Slight increases in the manganese concentrations were also found in the substantia nigra, basal ganglia (caudate nucleus, putamen, and globus pallidus), temporal cortex, and frontal cortex, thereby indicating that the pharmacokinetics and distribution of the manganese inhaled from the welding fumes were different from those resulting from manganese-only exposure.


Journal of Veterinary Science | 2009

Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells

Hyun Sun Cho; Seung Hee Chang; Youn Sun Chung; Ji-Young Shin; Sung-Jin Park; Eun Sun Lee; Soon Kyung Hwang; Jung Taek Kwon; Arash Minai Tehrani; Min-Ah Woo; Mi Sook Noh; Huda Hanifah; Hua Jin; Cheng Xiong Xu; Myung Haing Cho

Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to have anti-tumor activity in various malignant neoplasms. However, the precise mechanism by which TET inhibits tumor cell growth remains to be elucidated. The present studies were performed to characterize the potential effects of TET on phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase (ERK) pathways since these signaling pathways are known to be responsible for cell growth and survival. TET suppressed cell proliferation and induced apoptosis in A549 human lung carcinoma cells. TET treatment resulted in a down-regulation of Akt and ERK phosphorylation in both time-/concentration-dependent manners. The inhibition of ERK using PD98059 synergistically enhanced the TET-induced apoptosis of A549 cells whereas the inhibition of Akt using LY294002 had a less significant effect. Taken together, our results suggest that TET: i) selectively inhibits the proliferation of lung cancer cells by blocking Akt activation and ii) increases apoptosis by inhibiting ERK. The treatment of lung cancers with TET may enhance the efficacy of chemotherapy and radiotherapy and increase the apoptotic potential of lung cancer cells.


Archives of Toxicology | 2015

Toxic response of graphene nanoplatelets in vivo and in vitro

Eun Jung Park; Gwang Hee Lee; Beom Seok Han; Byoung Seok Lee; Somin Lee; Myung Haing Cho; Jae Ho Kim; Dong Wan Kim

With the development of nanotechnology, myriad types of novel materials have been discovered at the nanoscale, among which the most interesting material is graphene. However, the toxicity data available on graphene are extremely limited. In this study, we explored toxic response of commercially available graphene nanoplatelets (GNPs) in vivo and in vitro. The GNPs used in this study had a high surface area and feature considerably few defects. In mice, GNPs (2.5 and 5xa0mg/kg) remained in the lung until 28xa0days after a single instillation, and the secretion of inflammatory cytokines reached the maximal level at Day 14 and then decreased over time. In vitro study using BEAS-2B cells, a human bronchial epithelial cell line, GNPs located within autophagosome-like vacuoles 24xa0h after exposure. The GNPs (2.5, 5, 10, and 20xa0μg/mL) also dose-dependently reduced cell viability, which was accompanied by an increase in the portion of cells in the subG1 and S phases. Moreover, the GNPs down-regulated the generation of reactive oxygen species, suppressed ATP production, caused mitochondria damage, and elevated the levels of autophagy-related proteins. Based on these results, we suggest that GNPs provoked a subchronic inflammatory response in mice and that GNPs induced autophagy accompanying apoptosis via mitochondria damage in vitro.


Archives of Toxicology | 2014

Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells

Eun Jung Park; Ha Nee Umh; Donghyuk Choi; Myung Haing Cho; Wookhee Choi; Sang-Wook Kim; Younghun Kim; Jae-Ho Kim

AbstractnThe unique properties of nanoparticles and biological systems are important factors affecting the biological response following nanoparticle exposure. Iron oxide nanoparticles are classified mainly as magnetite (M-FeNPs) and maghemite (NM-FeNPs). In our previous study, NM-FeNPs induced autophagic cell death in RAW264.7, a murine peritoneal macrophage cell line, which has excellent lysosomal activity. In this study, we compared the toxicity of M-FeNPs and NM-FeNPs in MH-S, a murine alveolar macrophage cell line, which has relatively low lysosomal activity. At 24xa0h post-exposure, M-FeNPs decreased cell viability and ATP production, and elevated the levels of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines to a higher extent than NM-FeNPs. Damage of mitochondria and the endoplasmic reticulum and the down-regulation of mitochondrial function and transcription-related genes were also higher in cells exposed to M-FeNPs than in cells exposed to NM-FeNPs (50xa0μg/ml). In addition, cells exposed to M-FeNPs (50xa0μg/ml) showed an increase in the number of autophagosome-like vacuoles, whereas cells exposed to NM-FeNPs formed large vacuoles in the cytosol. However, an autophagy-related molecular response was not induced by exposure to either FeNPs, unlike the results seen in our previous study with RAW264.7 cells. We suggest that M-FeNPs induced higher toxicity compared to NM-FeNPs in MH-S cells, and lysosomal activity plays an important role in determining cell death pathway.

Collaboration


Dive into the Myung Haing Cho's collaboration.

Top Co-Authors

Avatar

Chong-Su Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong Hee Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kee Ho Lee

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Woo Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge