N. A. Pronina
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. A. Pronina.
FEBS Letters | 1999
Youn-Il Park; Jan Karlsson; Igor Rojdestvenski; N. A. Pronina; Viacheslav Klimov; Gunnar Öquist; Göran Samuelsson
Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2‐concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II‐mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular α‐CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.
Russian Journal of Plant Physiology | 2004
E. A. Muradyan; G. L. Klyachko-Gurvich; L. N. Tsoglin; Tatiana V Sergeyenko; N. A. Pronina
The effects of CO2 on the content and composition of lipid fatty acids (FA) and on the photosynthetic characteristics of unicellular halophilic green alga Dunaliella salina (known to be susceptible to CO2 stress) were investigated. It was shown that even one-day-long increase in the CO2 concentration (from 2 to 10%) provoked an increase in the total amount of FA on the dry weight basis by 30%. After 7-day-long growth at 10% CO2, this value was 2.7-fold higher than that at 2% CO2. The difference in the FA content and composition indicated the activation of FA synthesis de novo and inhibition of their elongation and desaturation, as well as the increase in the relative content of saturated FA at 10% CO2. It was demonstrated that, after one-day-long CO2 stress, the MGDG/DGDG ratio increased fourfold without change in the sum of their FA, which indicates the increase in the proportion of lipids predisposed to micellar (hexagonal phase) but not lamellar structure formation. Under short-term CO2 stress, the ratio of ω3/ω6 FA increased and the content of E-16:1ω13 FA in phosphatidylglycerols increased sharply. The drop in protein content especially in the photosystem I (PSI) preparations, as well as diminishing the ratio of F700-to-F686 nm fluorescence (F700/F686) under short-term CO2 stress argued for the significant damage to PSI. The reversibility of these changes at more prolonged treatment (7 and 10 days) demonstrated that D. salina cells could restore the functional activity of PSI. The lower level of F700/F686, chlorophyll a (Chla)/Chlb, and ω3/ω6 FA ratio in line with the higher level of E-16:1ω13 in the cells growing for a long time at the high CO2 concentration is characteristic for the new structural and functional state of the photosynthetic apparatus providing for the effective photosynthesis of D. salina under these conditions.
Biochimica et Biophysica Acta | 2012
Maria A. Sinetova; Elena V. Kupriyanova; A. G. Markelova; Suleyman I. Allakhverdiev; N. A. Pronina
The distribution of the luminal carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid was studied in wild-type cells of Chlamydomonas reinhardtii and in its cia3 mutant deficient in the activity of the Cah3 protein. In addition, the effect of CO(2) concentration on fatty acid composition of photosynthetic membranes was examined in wild-type cells and in the cia3 mutant. In the cia3 mutant, the rate of growth was lower as compared to wild-type, especially in the cells grown at 0.03% CO(2). This might indicate a participation of thylakoid Cah3 in the CO(2)-concentrating mechanism (CCM) of chloroplast and reflect the dysfunction of the CCM in the cia3 mutant. In both strains, a decrease in the CO(2) concentration from 2% to 0.03% caused an increase in the content of polyunsaturated fatty acids in membrane lipids. At the same time, in the cia3 mutant, the increase in the majority of polyunsaturated fatty acids was less pronounced as compared to wild-type cells, whereas the amount of 16:4ω3 did not increase at all. Immunoelectron microscopy demonstrated that luminal Cah3 is mostly located in the thylakoid membranes that pass through the pyrenoid. In the cells of CCM-mutant, cia3, the Cah3 protein was much less abundant, and it was evenly distributed throughout the pyrenoid matrix. The results support our hypothesis that CO(2) might be generated from HCO(3)(-) by Cah3 in the thylakoid lumen with the following CO(2) diffusion into the pyrenoid, where the CO(2) fixing Rubisco is located. This ensures the maintenance of active photosynthesis under CO(2)-limiting conditions, and, as a result, the active growth of cells. The relationships between the induction of CCM and restructuring of the photosynthetic membranes, as well as the involvement of the Cah3 of the pyrenoid in these events, are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Journal of Photochemistry and Photobiology B-biology | 2011
Elena V. Kupriyanova; Maria A. Sinetova; A. G. Markelova; Suleyman I. Allakhverdiev; Dmitry A. Los; N. A. Pronina
The gene for β-class carbonic anhydrase (CA), which was designated as cahB1, was cloned from the genomic library of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. The product of the cahB1 gene was expressed in Escherichia coli. The protein revealed high specific activity of CA, which was inhibited with ethoxyzolamide. The maximum activity of the recombinant CA was detected at alkaline pH (∼9.0) and its minimum - at neutral pH (∼7.0). Western blotting analysis with the antibodies raised against the recombinant CahB1 protein revealed its localization in cell envelopes of M. chthonoplastes. Immunocytochemical localization of the CahB1 in cells confirmed its extracellular location. The newly characterized CahB1 of Microcoleus was similar in amino acid and nucleotide sequences to well known β-CAs of Synechococcus sp. PCC 7942 (IcfA) and Synechocystis sp. PCC 6803 (CcaA), although those CAs were attributed to the carboxysomal shells of cyanobacteria. Previously we have reported β-class CA which was associated with PS II of alkaliphilic cyanobacteria. Here we first report extracellular localization of β-class CA and provide a scheme for its possible involvement in the maintenance of a balance between external sources of inorganic carbon and photosynthesis in extreme environments of soda lakes.
Photosynthesis Research | 2013
Elena V. Kupriyanova; Maria A. Sinetova; Sung Mi Cho; Youn-Il Park; Dmitry A. Los; N. A. Pronina
The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3− interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.
Russian Journal of Plant Physiology | 2009
A. G. Markelova; M. P. Sinetova; Elena V. Kupriyanova; N. A. Pronina
Localization of lumenal carbonic anhydrase Cah3 in thylakoid membranes of Chlamydomonas reinhardtii was studied using wild-type algae and photosynthetic mutants with different composition of chlorophyll-protein complexes in the photosystems. In addition, the photosynthetic characteristics of wild-type C. reinhardtii and cia3 mutants lacking the activity of carbonic anhydrase Cah3 were examined. Western blot analysis revealed the lack of cross reaction with antibodies to Cah3 in the mutant lacking the photosystem II (PSII) reaction center, in contrast to the mutant deficient in light-harvesting complex of PSII. These data show that the lumenal Cah3 is associated with polypeptides on the donor side of PSII reaction center. Using immunoelectron microscopy and antibodies to Cah3 from C. reinhardtii, we showed for the first time that the major part of thylakoid Cah3 is localized in the pyrenoid where the bulk of Rubisco is located. The rate of photosynthetic oxygen evolution and PSII photochemical efficiency were lower in C. reinhardtii cia3 mutant than in the wild type, especially in the cells grown at limiting CO2 concentrations. These observations show that Cah3 takes part in CO2-concentrating mechanism of the chloroplast. The results support our hypothesis [1, 2] that the carboxylation reaction in microalgae proceeds in the pyrenoid, a specific Rubisco-containing part of the chloroplast, which acquires CO2 from the lumen of intrapyrenoid thylakoids. We discuss significance of the pyrenoid as an autonomous metabolic microcompartment, in which Cah3 plays a key role in the production and concentration of CO2 for Rubisco. These functions may promote the photosynthetic efficiency owing to the effective CO2 supply for the Calvin cycle.
Russian Journal of Plant Physiology | 2005
A. A. Nalimova; V. V. Popova; L. N. Tsoglin; N. A. Pronina
The effects of copper and zinc on Spirulina platensis (Nordst.) Geitl. growth and the capability of this cyanobacterium for accumulation of these heavy metals (HMs) were studied. S. platensis tolerance to HMs was shown to depend on the culture growth phase. When copper was added during the lag phase, its lethal concentration was 5 mg/l, whereas 4 mg/l were lethal during the linear growth phase. Zinc concentration of 8.8 mg/l was lethal during the linear but not lag phase of growth. HM-treated S. platensis cells were capable for accumulation of tenfold more copper and zinc than control cells. Independently of Cu2+ content in the medium and of the growth phase, cell cultures accumulated the highest amount of this metal as soon as after 1 h, which may be partially determined by its primary sorption by cell-wall polysaccharides. A subsequent substantial decrease in the intracellular copper content occurred due to it secretion, which was evident from the increased metal concentration in the culturing medium. When zinc was added during the linear growth phase, similar pattern of its accumulation was observed: the highest content after 1 h and its subsequent decrease to the initial level. When the initial density of the culture was low and the cells had much time to adapt to HM, zinc accumulated during the entire linear growth phase, and thereafter the metal was secreted to the medium. The mechanisms of S. platensis tolerance to HM related to both their sorption by the cell walls and secretion of metal excess into the culturing medium and its conversion into the form inaccessible for the cells are discussed.
Russian Journal of Plant Physiology | 2011
Elena V. Kupriyanova; N. A. Pronina
The bases of modern type biosphere were laid down about two billion years ago during the predominance of prokaryotes on the Earth. Cyanobacteria changed radically the composition of the Proterozoic atmosphere by saturating it with photosynthetic oxygen. At the same time, large quantities of atmospheric CO2 became sequestered in carbonates owing to mineralization of ancient cyano-bacterial communities; the latter have reached us in the form of laminated limestone deposits, termed stromatolites. The mechanism of carbonate depositing by cyanobacteria is still poorly understood. It is not yet clear whether physiological processes are involved in cell mineralization or if the outer membranes of cyanobacteria serve as a kind of crystallization center and arrange the structure for natural accumulation of sediments. We proposed that a key role in the mechanism of biomineralization belongs to the enzyme carbonic anhydrase (CA), which regulates the equilibrium between the inorganic carbon forms (Ci), including bicarbonate that participates in natural sedimentation of calcium. Since the deposition of calcium carbonate by prokaryotes occurs in the pericellular space and this deposition is controlled by pH, it seems likely that CA, localized on the periphery of cyanobacterial cells, is involved in stabilizing the external pH and in promoting cell mineralization. This review summarizes information concerning possible mechanisms of biogenic calcification (CaCO3 deposition). The function of CA in the living cell and the role of this enzyme in biological processes are considered, and the data on localization of CA in cyano-bacterial cells are presented. Based on available evidence, a scheme is suggested to describe the role of extracellular CA in photosynthetic carbon assimilation and to relate this process with CaCO3 deposition during mineralization of cyanobacteria.
Journal of Biological Chemistry | 2015
Sung Mi Cho; Sae Chae Jeoung; Ji-Young Song; Elena V. Kupriyanova; N. A. Pronina; Bong-Woo Lee; Seong-Whan Jo; Beom-Seok Park; Sang-Bong Choi; Ji-Joon Song; Youn-Il Park
Background: Cyanobacteriochromes (CBCRs), photoreceptors that sense red to near-UV light, were not previously reported in the cyanobacterium Microcoleus. Results: The Microcoleus genome encodes seven CBCR proteins covalently attached to phycocyanobilin or phycoviolobilin. Conclusion: Near-UV and violet CBCRs are enriched in Microcoleus, whereas red- and green-sensitive CBCRs are absent. Significance: This is the first report of CBCRs in the Microcoleus genome. Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.
Russian Journal of Plant Physiology | 2003
Elena V. Kupriyanova; N. V. Lebedeva; M. V. Dudoladova; L. M. Gerasimenko; S. G. Alekseeva; N. A. Pronina; G. A. Zavarzin
The activity and intracellular partition of carbonic anhydrase (CA) were studied in alkalophilic cyanobacteria, an inhabitant of soda lakes at pH 9–10. In the homogenates of Rhabdoderma lineare, Rhabdoderma sp., and Microcoleus chthonoplastes, high activity of CA was found, similar to that in eukaryotic microalgae. The activity of CA calculated on the basis of chlorophyll and protein was higher for the soluble (sCA) than for membrane (mCA) protein fraction. Intact cells of all cyanobacteria under investigation also showed CA activity that implies the presence of extracellular form(s). The extracellular CA in benthic M. chthonoplastes was localized, at least partly, in a vast glycocalix (gCA) as shown by Western blotting and the measurement of enzyme activity in the isolated glycocalix preparations. Probing gCA from M. chthonoplastes with the antibodies against thylakoid CA from Chlamydomonas reinhardtii (Cah3) demonstrated that gCA belongs to the α-type of enzyme and has the structure identical to that of Cah3. The extracellular CA of M. chthonoplastes manifested the maximum activity at pH 7 and 10, but not at pH 6 and 9. An increase in medium pH from 7.2 to 9.6 resulted only in slight alkalization of the cytoplasm in R. lineare, from 7.1 to 7.5. It follows that true alkalophils can maintain the pH inside the cell at the near-neutral level in spite of high pH (10.2) level in the cultural medium.