N. A. Walton
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. A. Walton.
Archive | 2012
Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; Christopher H. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
Monthly Notices of the Royal Astronomical Society | 2006
Simon Dye; S. J. Warren; Nigel Hambly; N. J. G. Cross; S. T. Hodgkin; M. J. Irwin; A. Lawrence; A. J. Adamson; Omar Almaini; A. C. Edge; Paul Hirst; R. F. Jameson; P. W. Lucas; C. van Breukelen; J. Bryant; Mark M. Casali; Ross Collins; Gavin B. Dalton; Jonathan Ivor Davies; C. J. Davis; James P. Emerson; D. W. Evans; S. Foucaud; E. Gonzales-Solares; Paul C. Hewett; Timothy Kendall; T. H. Kerr; S. K. Leggett; N. Lodieu; J. Loveday
This paper defines the UKIRT Infrared Deep Sky Survey (UKIDSS) Early Data Release (EDR). UKIDSS is a set of five large near-infrared surveys being undertaken with the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). The programme began in 2005 May and has an expected duration of 7 yr. Each survey uses some or all of the broad-band filter complement ZY JHK. The EDR is the first public release of data to the European Southern Observatory (ESO) community. All worldwide releases occur after a delay of 18 months from the ESO release. The EDR provides a small sample data set, ∼50 deg(2) (about 1 per cent of the whole of UKIDSS), that is a lower limit to the expected quality of future survey data releases. In addition, an EDR+ data set contains all EDR data plus extra data of similar quality, but for areas not observed in all of the required filters (amounting to ∼220 deg(2)). The first large data release, DR1, will occur in mid-2006. We provide details of the observational implementation, the data reduction, the astrometric and photometric calibration and the quality control procedures. We summarize the data coverage and quality (seeing, ellipticity, photometricity, depth) for each survey and give a brief guide to accessing the images and catalogues from the WFCAM Science Archive.
Astronomy and Astrophysics | 2014
Maria Bergemann; Gregory R. Ruchti; Aldo M. Serenelli; Sofia Feltzing; Alan Alves-Brito; Martin Asplund; Thomas Bensby; P. Gruiters; Ulrike Heiter; A. Hourihane; A. Korn; Karin Lind; A. F. Marino; P. Jofre; Thomas Nordlander; Nils Ryde; C. C. Worley; G. Gilmore; S. Randich; Annette M. N. Ferguson; R. D. Jeffries; G. Micela; I. Negueruela; T. Prusti; H.-W. Rix; A. Vallenari; Emilio J. Alfaro; C. Allende Prieto; A. Bragaglia; S. E. Koposov
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Astronomy and Astrophysics | 2017
F. Arenou; X. Luri; C. Babusiaux; C. Fabricius; Amina Helmi; A. C. Robin; A. Vallenari; S. Blanco-Cuaresma; T. Cantat-Gaudin; K. Findeisen; C. Reylé; L. Ruiz-Dern; R. Sordo; C. Turon; N. A. Walton; I.-C. Shih; E. Antiche; C. Barache; M. Barros; Maarten A. Breddels; J. M. Carrasco; G. Costigan; S. Diakite; Laurent Eyer; F. Figueras; L. Galluccio; J. Heu; C. Jordi; A. Krone-Martins; R. Lallement
Before the publication of the Gaia Catalogue, the contents of the first data release have undergone multiple dedicated validation tests. These tests aim at analysing in-depth the Catalogue content to detect anomalies, individual problems in specific objects or in overall statistical properties, either to filter them before the public release, or to describe the different caveats of the release for an optimal exploitation of the data. Dedicated methods using either Gaia internal data, external catalogues or models have been developed for the validation processes. They are testing normal stars as well as various populations like open or globular clusters, double stars, variable stars, quasars. Properties of coverage, accuracy and precision of the data are provided by the numerous tests presented here and jointly analysed to assess the data release content. This independent validation confirms the quality of the published data, Gaia DR1 being the most precise all-sky astrometric and photometric catalogue to-date. However, several limitations in terms of completeness, astrometric and photometric quality are identified and described. Figures describing the relevant properties of the release are shown and the testing activities carried out validating the user interfaces are also described. A particular emphasis is made on the statistical use of the data in scientific exploitation.
Monthly Notices of the Royal Astronomical Society | 2014
G. Barentsen; H. J. Farnhill; Janet E. Drew; E. Gonzalez-Solares; R. Greimel; M. J. Irwin; Brent Miszalski; C. Ruhland; P. Groot; A. Mampaso; S. E. Sale; A.A. Henden; A. Aungwerojwit; M. J. Barlow; P.R. Carter; Romano L. M. Corradi; Jeremy J. Drake; J. Eislöffel; J. Fabregat; B. T. Gänsicke; N. P. Gentile Fusillo; A. Hales; Simon T. Hodgkin; Leo Huckvale; J. Irwin; Robert R. King; Christian Knigge; T. Kupfer; E. Lagadec; Daniel J. Lennon
The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800 deg2 imaging survey covering Galactic latitudes |b| < 5° and longitudes l = 30°–215° in the r, i, and Hα filters using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92 per cent of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec pixel−1) and to a mean 5σ depth of 21.2 (r), 20.0 (i), and 20.3 (Hα) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (root mean square) and recommend a series of quality criteria to select accurate data from the catalogue. Finally, we demonstrate the ability of the catalogues unique (r − Hα, r − i) diagram to (i) characterize stellar populations and extinction regimes towards different Galactic sightlines and (ii) select and quantify Hα emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys.
Monthly Notices of the Royal Astronomical Society | 2009
S. E. Sale; Janet E. Drew; Yvonne C. Unruh; M. J. Irwin; Christian Knigge; Steven Phillipps; Albert A. Zijlstra; B. T. Gänsicke; R. Greimel; P. Groot; A. Mampaso; Rhys Morris; R. Napiwotzki; D. Steeghs; N. A. Walton
We present an algorithm (MEAD, for ‘Mapping Extinction Against Distance’) which will determine intrinsic (r ′ −i ′ ) colour, extinction, and distance for early-A to K4 stars ex tracted from the IPHAS r ′ /i ′ /Hα photometric database. These data can be binned up to map extinction in three dimensions across the northern Galactic Plane. The large size of the IPHAS database (∼ 200 million unique objects), the accuracy of the digital photometry it contains and its faint limiting magnitude (r ′ ∼ 20) allow extinction to be mapped with fine angular ( ∼ 10 arcmin) and distance (∼ 0.1 kpc) resolution to distances of up to 10 kpc, outside the Solar Circle. High reddening within the Solar Circle on occasion brings this range down to ∼ 2 kpc. The resolution achieved, both in angle and depth, greatly exceeds that of previous empirical 3D extinction maps, enabling the structure of the Galactic Pla ne to be studied in increased detail. MEAD accounts for the effect of the survey magnitude limits, photometric errors, unresolved ISM substructure, and binarity. The impact of metallicity variations, within the range typical of the Galactic disc is small. The accuracy and reliability o f MEAD are tested through the use of simulated photometry created with Monte-Carlo sampling techniques. The success of this algorithm is demonstrated on a selection of fields and th e results are compared to the literature.
Astronomy and Astrophysics | 2003
L. Magrini; R. L. M. Corradi; R. Greimel; P. Leisy; Daniel J. Lennon; A. Mampaso; M. Perinotto; Don Pollacco; Jeremy R. Walsh; N. A. Walton; Albert A. Zijlstra
In the framework of our narrow-band survey of the Local Group galaxies, we present the results of the search for planetary nebulae (PNe) in the dwarf irregular galaxies IC 10, Leo A and Sextans A. Using the standard on-band/off-band technique, sixteen new candidate PNe have been discovered in the closest starburst galaxy, IC 10. The optical size of this galaxy is estimated to be much larger than previously thought, considering the location of the new PNe in an area of 3.6 kpc × 2.7 kpc. We also confirm the results of previous studies for the other two dwarf irregular galaxies, with the detection of one candidate PN in Leo A and another one in Sextans A. We review the number of planetary nebulae discovered in the Local Group to date and their behaviour with metallicity. We suggest a possible fall in the observed number of PNe when (Fe/H) � -1.0, which might indicate that below this point the formation rate of PNe is much lower than for stellar populations of near Solar abundances. We also find non-negligible metallicity effects on the (O ) luminosity of the brightest PN of a galaxy.
Proceedings of SPIE | 2012
Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; C. J. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard
We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2 degree prime focus field of view at the WHT, with a buffered pick and place positioner system hosting 1000 multi-object (MOS) fibres or up to 30 integral field units for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000.
Astronomy and Astrophysics | 2017
F. van Leeuwen; D. W. Evans; F. De Angeli; C. Jordi; G. Busso; Carla Cacciari; M. Riello; E. Pancino; Giuseppe Altavilla; A. G. A. Brown; P. Burgess; J. M. Carrasco; G. Cocozza; S. Cowell; M. Davidson; F. De Luise; C. Fabricius; S. Galleti; G. Gilmore; G. Giuffrida; Nigel Hambly; D. Harrison; Simon T. Hodgkin; G. Holland; I. Macdonald; S. Marinoni; P. Montegriffo; P. Osborne; S. Ragaini; P. J. Richards
Context. This paper presents an overview of the photometric data that are part of the first Gaia data release. Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented. Methods. The calibration strategy is outlined briefly and the main properties of the resulting photometry are presented. Results. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases.
Monthly Notices of the Royal Astronomical Society | 2010
S. E. Sale; Janet E. Drew; Christian Knigge; Albert A. Zijlstra; M. J. Irwin; Rhys Morris; Steven Phillipps; Jeremy J. Drake; R. Greimel; Yvonne C. Unruh; P. Groot; A. Mampaso; N. A. Walton
This study is an investigation of the stellar density profile of the Galactic disc in the Anticentre direction. We select over 40,000 early A stars from IPHAS photometry in the Galactic longitude range 160 ◦ < l < 200 ◦ close to the equatorial plane (−1 ◦ < b < +1 ◦ ). We then compare their observed reddening-corrected apparent magnitude distribution with simulated photometry obtained from parameterised models in order to set constraints on the Anticentre stellar density profile. By selecting A stars, we are appraising the properties of a population only ∼ 100 Myrs old. We find the stellar density profile of young stars is well fit to an exponential with length scale of (3020 ± 120statistical ± 180systematic) pc, which is comparable to that obtained in earlier studies, out to a Galactocentric radius of RT = (13.0 ± 0.5statistical ± 0.6systematic) kpc. At larger radii the rate of decline appears to increase with the scale length dropping to (1200 ± 300statistical ± 70systematic) pc. This result amounts to a refinement of the conclusions reached in previou s studies that the stellar density profile is abruptly truncated. The IPHAS A star data are n ot compatible with models that propose a sudden change in metallicity at RG = 10 kpc.