N. Bucciantini
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Bucciantini.
Astronomy and Astrophysics | 2002
L. Del Zanna; N. Bucciantini; P. Londrillo
Multidimensional shock-capturing numerical schemes for special relativistic hydrodynamics (RHD) are compu- tationally more expensive than their correspondent Euler versions, due to the nonlinear relations between conservative and primitive variables and to the consequent complexity of the Jacobian matrices (needed for the spectral decomposition in most of the approximate Riemann solvers of common use). Here an ecient and easy-to-implement three-dimensional (3-D) shock- capturing scheme for ideal RHD is presented. Based on the algorithms developed by P. Londrillo & L. Del Zanna (2000, ApJ, 530, 508) for the non-relativistic magnetohydrodynamic (MHD) case, and having in mind its relativistic MHD extension (to ap- pear in a forthcoming paper), the scheme uses high order (third) Convex Essentially Non-Oscillatory (CENO) finite dierence interpolation routines and central-type averaged Riemann solvers, which do not make use of time-consuming characteristic de- composition. The scheme is very ecient and robust, and it gives results comparable to those obtained with more sophisticated algorithms, even in ultrarelativistic multidimensional test problems.
Astronomy and Astrophysics | 2004
L. Del Zanna; E. Amato; N. Bucciantini
The structure and the evolution of Pulsar Wind Nebulae (PWNe) are studied by means of two-dimensional axisym- metric relativistic magnetohydrodynamic (RMHD) simulations. After the first imaging of the Crab Nebula with Chandra ,a growing number of objects has been found to show in the X-rays spatial features such as rings and jets, that clearly cannot be accounted for within the standard framework of one-dimensional semi-analytical models. The most promising explanation suggested so far is based on the combined effects of the latitude dependence of the pulsar wind energy flux, shaping the wind termination shock and naturally providing a higher equatorial emission, and of the wind magnetization, likely responsible for the jet collimation by hoop stresses downstream of the shock. This scenario is investigated here by following the evolution of a PWN interacting with the confining Supernova Remnant (SNR), from the free expansion to the beginning of the reverberation phase. Our results confirm the oblate shape of the wind termination shock and the formation of a polar jet with supersonic velocities (v ≈ 0.5−0.7c) for high enough values of the equatorial wind magnetization parameter (σ > 0.01).
Monthly Notices of the Royal Astronomical Society | 2009
N. Bucciantini; Eliot Quataert; Brian D. Metzger; Todd A. Thompson; Jonathan Arons; L. Del Zanna
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond, B ∼ 10 15 G, magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron stars atmosphere and the winds interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers (∼10 51 ―10 52 erg s ―1 ), the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers (∼10 50 erg s ―1 ), the wind is subfast but still super-Alfvenic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≤30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated (∼5―10°) relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.
Monthly Notices of the Royal Astronomical Society | 2008
N. Bucciantini; Eliot Quataert; J. Arons; Brian D. Metzger; Todd A. Thompson
We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first � 10 seconds after core collapse. We inject a super-magnetosonic wind with u E = 10 51 ergs s 1 into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a longduration gamma-ray burst (GRB). At � 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii � 10 11 cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on � 0.01 0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).
Experimental Astronomy | 2013
Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella
Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
Astronomy and Astrophysics | 2005
N. Bucciantini; E. Amato; L. Del Zanna
Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found also associated to TeV halos, with a large variety of morphologies. They offer a unique environment where the pulsar wind can be studied by modelling its interaction with the surrounding ambient medium, in a fashion that is different/complementary from the canonical Plerions. These systems have also been suggested as the possible origin of the positron excess detected by AMS and PAMELA, in contrast to dark matter. I will present results from 3D Relativistic MHD simulations of such nebulae. On top of these simulations we computed the expected emission signatures, the properties of high energy particle escape, the role of current sheets in channeling cosmic rays, the level of turbulence and magnetic amplification, and how they depend on the wind structure and magnetisation.
Monthly Notices of the Royal Astronomical Society | 2009
N. F. Camus; S. S. Komissarov; N. Bucciantini; P. A. Hughes
In this paper, we describe results of new high-resolution axisymmetric relativistic magnetohydrodynamic (MHD) simulations of pulsar wind nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind-termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well-known images of the Crab Nebula obtained by Chandra and the Hubble Space Telescope. In addition to the jet-torus structure, these maps reproduce the Crabs famous moving wisps whose speed and rate of production agree with the observations. The variability is then analysed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3 years and MHD turbulence on scales below 1 year. The full account of this study will be presented in a follow-up paper.
Monthly Notices of the Royal Astronomical Society | 2007
N. Bucciantini; Eliot Quataert; J. Arons; Brian D. Metzger; Todd A. Thompson
We model the interaction between the wind from a newly formed rapidly rotating magnetar and the surrounding supernova shock and host star. The dynamics is modelled using the two-dimensional, axisymmetric thin-shell equations. In the first ∼10-100 s after core-collapse the magnetar inflates a bubble of plasma and magnetic fields behind the supernova shock. The bubble expands asymmetrically because of the pinching effect of the toroidal magnetic field, even if the host star is spherically symmetric, just as in the analogous problem of the evolution of pulsar wind nebulae. The degree of asymmetry depends on E mag /E tot , the ratio of the magnetic energy to the total energy in the bubble. The correct value of E mag /E tot is uncertain because of uncertainties in the conversion of magnetic energy into kinetic energy at large radii in relativistic winds; we argue, however, that bubbles inflated by newly formed magnetars are likely to be significantly more magnetized than their pulsar counterparts. We show that for a ratio of magnetic to total power supplied by the central magnetar E mag /E tot ≤0.1 the bubble expands relatively spherically. For E mag /E tot ≥0.3, however, most ofthe pressure in the bubble is exerted close to the rotation axis, driving a collimated outflow out through the host star. This can account for the collimation inferred from observations of long-duration gamma-ray bursts (GRBs). Outflows from magnetars become increasingly magnetically dominated at late times, due to the decrease in neutrino-driven mass loss as the young neutron star cools. We thus suggest that the magnetar-driven bubble initially expands relatively spherically, enhancing the energy of the associated supernova, while at late times it becomes progressively more collimated, producing the GRB. The same physical processes may operate in more modestly rotating neutron stars to produce asymmetric supemovae and lower energy transients such as X-ray flashes.
Astronomy and Astrophysics | 2006
L. Del Zanna; D. Volpi; E. Amato; N. Bucciantini
Aims. A complete set of diagnostic tools aimed at producing synthetic synchrotron emissivity, polarization, and spectral index maps from relativistic MHD simulations is presented. As a first application we consider here the case of the emission from Pulsar Wind Nebulae (PWNe). Methods. The proposed method is based on the addition, on top of the basic set of MHD equations, of an extra equation describing the evolution of the maximum energy of the emitting particles. This equation takes into account adiabatic and synchrotron losses along streamlines for the distribution of emitting particles and its formulation is such that it is easily implemented in any numerical scheme for relativistic MHD. Results. Application to the axisymmetric simulations of PWNe, analogous to those described by Del Zanna et al. (2004), allows direct comparison between the numerical results and observations of the inner structure of the Crab Nebula, and similar objects, in the optical and X-ray bands. We are able to match most of the observed features typical of PWNe, like the equatorial torus and the polar jets, with velocities in the correct range, as well as finer emission details, like arcs, rings and the bright knot, that turn out to arise mainly from Doppler boosting effects. Spectral properties appear to be well reproduced too: detailed spectral index maps are produced for the first time and show softening towards the PWN outer borders, whereas spectral breaks appear in integrated spectra. The emission details are found to strongly depend on both the average wind magnetization, here σeff ≈ 0.02, and on the magnetic field shape. Conclusions. Our method, in spite of its simplicity, provides a realistic modeling of synchrotron emission properties, and twodimensional axisymmetric relativistic MHD simulations appear to be well suited to explain the main observational features of PWNe.
Astronomy and Astrophysics | 2008
D. Volpi; L. Del Zanna; E. Amato; N. Bucciantini
Aims. We develop a set of diagnostic tools for synchrotron-emitting sources, presented in a previous paper, to include a computation of inverse-Compton radiation from the same relativistic particles that give rise to the synchrotron emission. For the first time, we then study the gamma-ray emission properties of Pulsar Wind Nebulae, in the context of the axisymmetric jet-torus scenario. Methods. We evolve the relativistic MHD equations and the maximum energy of the emitting particles, including adiabatic and synchrotron losses along streamlines. The particle energy distribution function is split into two components: one corresponds to radio-emitting electrons, which are interpreted to be a relic population that is born at the outburst of the supernova, and the other is associated with a wind population that is continuously accelerated at the termination shock and emits up to the gamma-ray band. The inverse Compton emissivity is calculated using the general Klein-Nishina differential cross-section and three different photon targets for the relativistic particles are considered: the nebular synchrotron photons, photons associated with the far-infrared thermal excess, and the cosmic microwave background. Results. When the method is applied to the simulations that match the optical and X-ray morphology of the Crab Nebula, the overall synchrotron spectrum can only be fitted assuming an excess of injected particles and a steeper power law (E −2.7 ) with respect to previous models. The resulting TeV emission has then the correct shape but is in excess of the data. This is related to the magneticfield structure in the nebula, derived using simulations: in particular, the field is strongly compressed close to the termination shock, but with a lower than expected volume average. The jet-torus structure is also found to be visible clearly in high-resolution gamma-ray synthetic maps. We present a preliminary exploration of time variability in X- and gamma-rays. We find variations with timescales of about 2 years in both bands. The variability observed originates in the strongly time-dependent MHD motions inside the nebula.In this paper we complete the set of diagnostic tools for synchrotron emitting sources presented by Del Zanna et al. (Astron. Astrophys. 453, 621, 2006) with the computation of inverse Compton radiation from the same relativistic particles. Moreover we investigate, for the first time, the gamma-ray emission properties of Pulsar Wind Nebulae in the light of the axisymmetric jet-torus scenario. The method consists in evolving the relativistic MHD equations and the maximum energy of the emitting particles. The particle energy distribution function is split in two components: the radio one connected to a relic population born at the outburst of the supernova and the other associated to the wind population continuously accelerated at the termination shock and emitting up to the gamma-ray band. We consider the general Klein-Nishina cross section and three different photon targets: the nebular synchrotron photons, far-infrared thermal ones and the cosmic microwave background. The overall synchrotron spectrum is fitted assuming an excess of injected particles and a steeper power law with respect to previous models. The TeV emission has the correct shape but is in excess of the data. This is due to the nebular magnetic field structure as obtained by the simulations. The jet-torus morphology is visible in high-resolution gamma-ray synthetic maps too. We present a preliminary exploration of time variability in the X and gamma-ray bands.