Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Byrne is active.

Publication


Featured researches published by N. Byrne.


Frontiers in Immunology | 2014

The single intradermal cervical comparative test interferes with Johne's disease ELISA diagnostics

Aideen Kennedy; Ana T. Da Silva; N. Byrne; Rodney Govender; John MacSharry; Jim O’Mahony; Riona Sayers

Enzyme-linked immunosorbent assays (ELISA) of milk and serum samples are a routinely used method of screening herds for Mycobacterium avium subspecies paratuberculosis (MAP). Infection with MAP causes granulomatous enteritis of ruminants known as Johne’s disease (JD). The sensitivity (Se) and specificity (Sp) of MAP ELISAs leads to difficulties in the identification of both infected and infectious animals. Interference with MAP ELISA Se and Sp has been reported in MAP seronegative cows following administration of purified protein derivative (PPD) as part of intradermal testing for bovine tuberculosis (bTB). The aim of this study is to examine the impact of the single intradermal cervical comparative test (SICCT) for bTB, on both serum and milk MAP ELISA tests, in a herd containing both seropositive and seronegative cows pre-SICCT. A secondary objective is to provide appropriate timing of JD ELISA tests in relation to the SICCT. A herd of 139 cows were serum and milk sampled pre- and post-SICCT administration. Prior to SICCT, 6% of the herd tested seropositive for MAP using milk ELISA, with 8% positive on serum. ID Screen Paratuberculosis Indirect Screening Test (ID Vet) was used to screen the herd. Within 14 days of PPD administration, a significant increase in the prevalence of seropositive cows was recorded. Identical prevalence’s were recorded with both test matrices (39%). ELISA values remained significantly higher until day 43 post-SICCT in milk (P = 0.850), and day 71 in serum (P = 0.602). If the “new” positives detected post-bTB testing are deemed false positives due to generation of cross-reacting antibodies by administration of PPD, milk would appear a more suitable sample for JD ELISA testing within 2 months of SICCT. In summary, sampling for JD utilizing milk ELISA should be avoided in the 43-day period following PPD administration, with serum ELISA sampling avoided for an additional 28 days.


Irish Veterinary Journal | 2014

A survey of management practices on Irish dairy farms with emphasis on risk factors for Johne's disease transmission

Aideen Kennedy; Eugene F O’Doherty; N. Byrne; Jim O’Mahony; E. Kennedy; Riona Sayers

BackgroundJohne’s disease (JD) is a chronic granulomatous enteritis affecting ruminants. A number of farm management practices are associated with increased risk of JD transmission. The aim of the current study was to document JD-related management practices currently employed on Irish dairy farms.Survey questions focused on calving area (CA), calf and manure management. Independent variables (region, calving-season, enterprise type, herd size and biosecurity status) were used to examine influences on JD associated dependent variables (survey questions). Additionally general biosecurity practices were also examined.ResultsResults showed management practices implemented by Irish dairy farmers pose a high risk of JD transmission. Of the farmers surveyed, 97% used the CA for more than one calving, 73.5% and 87.8% pooled colostrum and milk respectively, 33.7% never cleaned the CA between calving’s, and 56.6% used the CA for isolating sick cows. Survey results also highlighted that larger herds were more likely to engage in high risk practices for JD transmission, such as pooling colostrum (OR 4.8) and overcrowding the CA (OR 7.8). Larger herds were also less likely than smaller herds to clean the CA (OR 0.28), a practice also considered of risk in the transmission of JD.ConclusionMany management practices associated with risk of JD transmission were commonly applied on Irish dairy farms. Larger herds were more likely to engage in high risk practices for JD transmission. Control programmes should incorporate educational tools outlining the pathogenesis and transmission of JD to highlight the risks associated with implementing certain management practices with regard to JD transmission.


Journal of Animal Science | 2016

Genetic parameters for both a liver damage phenotype caused by and antibody response to phenotype in dairy and beef cattle

Alan J Twomey; Riona Sayers; Rebecca I. Carroll; N. Byrne; E. O’ Brien; Michael L. Doherty; J. C. McClure; David A. Graham; D.P. Berry

is a helminth parasite of economic importance to the global cattle industry, with documented high international herd prevalence. The objective of the present study was to generate the first published genetic parameter estimates for liver damage caused by as well as antibody response to in cattle. Abattoir data on the presence of live , or -damaged livers, were available between the years 2012 and 2015, inclusive. A second data set was available on cows from 68 selected dairy herds with a blood ELISA test for antibody response to in autumn 2015. Animals were identified as exposed by using herd mate phenotype, and only exposed animals were retained for analysis. The abattoir data set consisted of 20,481 dairy cows and 75,041 young dairy and beef animals, whereas the study herd data set consisted of 6,912 dairy cows. (Co)variance components for phenotypes in both data sets were estimated using animal linear mixed models. Fixed effects included in the model for both data sets were contemporary group, heterosis coefficient, recombination loss coefficient, parity, age relative to parity/age group, and stage of lactation. An additional fixed effect of abattoir by date of slaughter was included in the model for the analysis of the abattoir data. Direct additive genetic effects and a residual effect were included as random effects for all analyses. After data edits, the prevalence of liver damage caused by in cows and young cattle was 47% and 20%, respectively. The prevalence of a positive antibody response to in cows from the study herd data was 36% after data edits. The heritability of as a binary trait for dairy cows in abattoir data and study herd data was 0.03 ± 0.01 and 0.09 ± 0.02, respectively; heritability in young cattle was 0.01 ± 0.005. The additive genetic SD of as a binary trait was 0.069 and 0.050 for cows and young cattle from the abattoir data, respectively, and 0.112 from the study herd cows. The genetic correlation between liver damage caused by in young cattle and cows from the abattoir data was 0.94 ± 0.312 and the genetic correlation between liver damage caused by in cows and positive antibody response to in cows in the study herd data was 0.37 ± 0.283.


Journal of Animal Science | 2017

Characterization of an X-chromosomal non-mosaic monosomy (59, X0) dairy heifer detected using routinely available single nucleotide polymorphism genotype data

D.P. Berry; A. Wolfe; J. O’Donovan; N. Byrne; Riona Sayers; K. G. Dodds; J. C. McEwan; R. E. O’Connor; M. McClure; D. C. Purfield

Evidence exists from a range of species on the impact of karyotype abnormalities on reproductive performance. Despite this, cytogenetic analyses of cattle, especially females, are not routinely undertaken. Genome-wide single nucleotide polymorphism (SNP) genotype data are now, however, routinely being generated in many species globally at a relatively low cost. The objective of the present study was to evaluate the potential of routinely available SNP genotype data to identify sex-chromosome aberrations using X chromosome monosomy 59,X0 as a case study for illustration. A single 2.5-yr old Holstein-Friesian heifer was detected with a mean allelic intensity of SNP on the X chromosome almost 17 standard deviations less than the mean of other genotyped females ( = 103,326). Following cytogenetic analysis (10 replicates by karyotyping and a further 140 by FISH), the female was deduced to be a non-mosaic 59,X0. The female had never produced a calf and, although gross examination revealed no physical abnormalities, she was smaller in size than expected based on her breed and age. Given the age of the animal at slaughter, the uterus and uterine tubes appeared immature and inactive. The oviduct appeared normal while the single ovary present contained a markedly reduced number of follicles. There was, however, some evidence of prior ovulation and formation of corpora lutea. The approach proposed in the present study to identify allosome aneuploidy from routinely available genotype data can be used to screen for such abnormalities at no additional cost to the breeder or producer.


Journal of Animal Science | 2018

Genetic correlations between endo-parasite phenotypes and economically important traits in dairy and beef cattle

Alan J Twomey; Rebecca I. Carroll; Michael L. Doherty; N. Byrne; David A. Graham; Riona Sayers; Astrid Blom; D.P. Berry

Parasitic diseases have economic consequences in cattle production systems. Although breeding for parasite resistance can complement current control practices to reduce the prevalence globally, there is little knowledge of the implications of such a strategy on other performance traits. Records on individual animal antibody responses to Fasciola hepatica, Ostertagia ostertagi, and Neospora caninum were available from cows in 68 dairy herds (study herds); national abattoir data on F. hepatica-damaged livers were also available from dairy and beef cattle. After data edits, 9,271 dairy cows remained in the study herd dataset, whereas 19,542 dairy cows and 68,048 young dairy and beef animals had a record for the presence or absence of F. hepatica-damaged liver in the national dataset. Milk, reproductive, and carcass phenotypes were also available for a proportion of these animals as well as their contemporaries. Linear mixed models were used to estimate variance components of antibody responses to the three parasites; covariance components were estimated between the parasite phenotypes and economically important traits. Heritability of antibody responses to the different parasites, when treated as a continuous trait, ranged from 0.07 (O. ostertagi) to 0.13 (F. hepatica), whereas the coefficient of genetic variation ranged from 4% (O. ostertagi) to 20% (F. hepatica). The antibody response to N. caninum was genetically correlated with the antibody response to both F. hepatica (-0.29) and O. ostertagi (-0.67); a moderately positive genetic correlation existed between the antibody response to F. hepatica and O. ostertagi (0.66). Genetic correlations between the parasite phenotypes and the milk production traits were all close to zero (-0.14 to 0.10), as were the genetic correlations between F. hepatica-damaged livers and the carcass traits of carcass weight, conformation, and fat score evaluated in cows and young animals (0.00 to 0.16). The genetic correlation between F. hepatica-damaged livers in cows and milk somatic cell score was 0.32 (SE = 0.20). Antibody responses to F. hepatica and O. ostertagi had favorable genetic correlations with fertility traits, but conversely, antibody response to N. caninum and F. hepatica-damaged livers were unfavorably genetically correlated with fertility. This study provides the necessary information to undertake national multitrait genetic evaluations for parasite phenotypes.


Frontiers in Veterinary Science | 2017

Is TB Testing Associated With Increased Blood Interferon-Gamma Levels?

Aideen Kennedy; Jim O’Mahony; N. Byrne; John MacSharry; Riona Sayers

The Republic of Ireland reports a relatively low prevalence of Johne’s disease (JD) compared to international counterparts. Postulated reasons for this include a lower average herd size and a grass-based production system. Ireland also engages in high levels of bovine tuberculosis (bTB) testing. As interferon-gamma (IFN-γ) is believed to play a key role in protecting against JD, it is our hypothesis that administration of purified protein derivative (PPD), as part of the bTB test, is associated with a systemic increase in IFN-γ production, which may potentially limit clinical progression of the disease. We studied 265 cows (202 Friesian and 63 “Non-Friesian,” e.g., JerseyX, Norwegian Red) to assess IFN-γ levels and Mycobacterium avium subspecies paratuberculosis (MAP) antibody response before and after the bTB test. As part of the compulsory annual bTB test, avian and bovine PPD were administered at two separate cervical sites. To assess IFN-γ production, blood samples were taken before and 72 h after PPD administration. MAP antibody response was assessed before and 10 days post-PPD administration. A significant increase in MAP antibody response was identified post-bTB compared to pre-bTB response (p < 0.001). Additionally, IFN-γ production significantly increased at the post-bTB time point (p < 0.001) compared to the pre-bTB test readings. This may indicate a beneficial effect of bTB testing in controlling JD.


Journal of Dairy Science | 2018

Genetic selection for hoof health traits and cow mobility scores can accelerate the rate of genetic gain in producer-scored lameness in dairy cows

S.C. Ring; A.J. Twomey; N. Byrne; M.M. Kelleher; T. Pabiou; Michael L. Doherty; D.P. Berry

Cattle breeding programs that strive to reduce the animal-level incidence of lameness are often hindered by the availability of informative phenotypes. As a result, indicator traits of lameness (i.e., hoof health and morphological conformation scores) can be used to improve the accuracy of selection and subsequent genetic gain. Therefore, the objectives of the present study were to estimate the variance components for hoof health traits using various phenotypes collected from a representative sample of Irish dairy cows. Also of interest to the present study was the genetic relationship between both hoof health traits and conformation traits with producer-scored lameness. Producer-recorded lameness events and linear conformation scores from 307,657 and 117,859 Irish dairy cows, respectively, were used. Data on hoof health (i.e., overgrown sole, white line disease, and sole hemorrhage), mobility scores, and body condition scores were also available from a research study on up to 11,282 Irish commercial dairy cows. Linear mixed models were used to quantify variance components for each trait and to estimate genetic correlations among traits. The estimated genetic parameters for hoof health traits in the present study were greater (i.e., heritability range: 0.005 to 0.27) than previously reported in dairy cows. With the exception of analyses that considered hoof health traits in repeatability models, little difference in estimated variance components existed among the various hoof-health phenotypes. Results also suggest that producer-recorded lameness is correlated with both hoof health (i.e., genetic correlation up to 0.48) and cow mobility (i.e., genetic correlation = 0.64). Moreover, cows that genetically tend to have rear feet that appear more parallel when viewed from the rear are also genetically more predisposed to lameness (genetic correlation = 0.39); genetic correlations between lameness and other feet and leg type traits, as well as between lameness and frame type traits, were not different from zero. Results suggest that if the population breeding goal was to reduce lameness incidence, improve hoof health, or improve cow mobility, genetic selection for either of these traits should indirectly benefit the other traits. Results were used to quantify the genetic gains achievable for lameness when alternative phenotypes are available.


Journal of Dairy Science | 2018

Genetic variability in the humoral immune response to bovine herpesvirus-1 infection in dairy cattle and genetic correlations with performance traits

S.C. Ring; David A. Graham; Riona Sayers; N. Byrne; M.M. Kelleher; Michael L. Doherty; D.P. Berry

Bovine herpesvirus-1 (BoHV-1) is a viral pathogen of global significance that is known to instigate several diseases in cattle, the most notable of which include infectious bovine rhinotracheitis and bovine respiratory disease. The genetic variability in the humoral immune response to BoHV-1 has, to our knowledge, not ever been quantified. Therefore, the objectives of the present study were to estimate the genetic parameters for the humoral immune response to BoHV-1 in Irish female dairy cattle, as well as to investigate the genetic relationship between the humoral immune response to BoHV-1 with milk production performance, fertility performance, and animal mortality. Information on antibody response to BoHV-1 was available to the present study from 2 BoHV-1 sero-prevalence research studies conducted between the years 2010 to 2015, inclusive; after edits, BoHV-1 antibody test results were available on a total of 7,501 female cattle from 58 dairy herds. National records of milk production (i.e., 305-d milk yield, fat yield, protein yield, and somatic cell score; n = 1,211,905 milk-recorded cows), fertility performance (i.e., calving performance, pregnancy diagnosis, and insemination data; n = 2,365,657 cows) together with animal mortality data (i.e., birth, farm movement, death, slaughter, and export events; n = 12,853,257 animals) were also available. Animal linear mixed models were used to quantify variance components for BoHV-1 as well as to estimate genetic correlations among traits. The estimated genetic parameters for the humoral immune response to BoHV-1 in the present study (i.e., heritability range: 0.09 to 0.16) were similar to estimates previously reported for clinical signs of bovine respiratory disease in dairy and beef cattle (i.e., heritability range: 0.05 to 0.11). Results from the present study suggest that breeding for resistance to BoHV-1 infection could reduce the incidence of respiratory disease in cattle while having little or no effect on genetic selection for milk yield or milk constituents (i.e., genetic correlations ranged from -0.13 to 0.17). Moreover, even though standard errors were large, results also suggest that breeding for resistance to BoHV-1 infection may indirectly improve fertility performance while also reducing the incidence of mortality in older animals (i.e., animals >182 d of age). Results can be used to inform breeding programs of potential genetic gains achievable for resistance to BoHV-1 infection in cattle.


Research in Veterinary Science | 2015

Prevalence of exposure to bovine viral diarrhoea virus (BVDV) and bovine herpesvirus-1 (BoHV-1) in Irish dairy herds

Riona Sayers; N. Byrne; E. O'Doherty; Sean Arkins


BMC Veterinary Research | 2016

Analysis of Johne's disease ELISA status and associated performance parameters in Irish dairy cows.

Aideen Kennedy; N. Byrne; A. B Garcia; Jim O’Mahony; Riona Sayers

Collaboration


Dive into the N. Byrne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim O’Mahony

Cork Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J Twomey

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.C. Ring

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge