N. Chandrasekaran
VIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Chandrasekaran.
Colloids and Surfaces B: Biointerfaces | 2010
Aswathy Ravindran; Anupam Singh; Ashok M. Raichur; N. Chandrasekaran; Amitava Mukherjee
Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications.
Toxicology Research | 2012
Swayamprava Dalai; Sunandan Pakrashi; R. S. Suresh Kumar; N. Chandrasekaran; Amitava Mukherjee
The aim of the present study was to explore the difference in toxicity mechanism of TiO2 nanoparticles (NPs) at low concentrations (≤1 μg mL−1), in a freshwater bacterial isolate, Bacillus licheniformis, under light (UV-illuminated) and dark (non-illuminated) conditions. Standard plate count and MTT assays showed the dose dependent decrease in the bacterial cell viability. The difference in reduction of cell viability under light (20.7%) and dark conditions (21.3%) was statistically non-significant at 1 μg mL−1 concentration and 2 h interaction period. The fluorescence microscopy of the NP interacted cells (1.0 μg mL−1, 2 h) under light and dark conditions showed the mixture of live and dead cells. A significant dose dependent increase in intracellular ROS generation compared to control was noted. The ROS level after 2 h of interaction was significantly higher under light conditions (7.4 ± 0.13%) as compared to dark conditions (4.35 ± 0.12%). The LDH analyses confirmed a statistically significant increase in membrane permeability under dark conditions compared to the light conditions. The NPs were stable against aggregation in sterilized lake water matrix for a period of 24 h, under both light and dark conditions. However, in the presence of bacterial cells an elevated rate of sedimentation was noted under dark conditions. The electron microscopic (SEM, TEM) observations suggested the concentration buildup of NPs near the plasma membrane leading to internalization. The zeta-potential analysis proved that NP attachment was not charge based. The FTIR studies demonstrated the possible involvement of surface functional groups in the attachment. The concentration of dissolved Ti4+ ions was found to be negligible during the test period. The dominant cytotoxicity mechanism under light conditions was found to be ROS generation, whereas, NP attachment to the cell membrane leading to membrane damage significantly contributed in dark conditions.
Ecotoxicology and Environmental Safety | 2011
I. Mohammed Sadiq; Swayamprava Dalai; N. Chandrasekaran; Amitava Mukherjee
In view of their increasing commercial applications metal oxide NPs like titania have elevated chances of entry to the environment. The ecotoxicity analyses are required to assess their environmental risks. The present work aims to demonstrate the effect of titania NPs on microalgae isolated from freshwater environment (Scenedesmus sp. and Chlorella sp.). The growth inhibitory effect of titania NPs was observed for both the species (72 h EC₅₀ value, 16.12 mg/L for Chlorella sp.; 21.2 mg/L for Scenedesmus sp.). Bulk micron-sized titania also showed toxicity though to a lesser extent (72 h EC₅₀ value, 35.50mg/L for Chlorella sp.; 44.40 mg/L for Scenedesmus sp.). A concentration dependent decrease in chlorophyll content was observed in the treated cells compared to the untreated ones, more effect being notable in case of NPs. Preliminary results based on FT-IR studies and microscopic images suggest interaction of the NPs with the cell surface.
Ecotoxicology and Environmental Safety | 2010
C.H. Anjali; S. Sudheer Khan; Katrin Margulis-Goshen; Shlomo Magdassi; Amitava Mukherjee; N. Chandrasekaran
The formulation of water dispersible nanopermethrin was investigated for its larvicidal property. Nanopermethrin was prepared using solvent evaporation of oil in water microemulsion, which was obtained by mixing an organic and aqueous phase. The mean particle size of nanodispersion in water was 151 ± 27 nm. X-ray diffraction (XRD) of nanopermethrin showed it was amorphous. Larvicidal studies were carried out against Culex quinquefasciatus and the results were compared with bulk permethrin. The LC(50) of nanopermethrin to Cx. quinquefasciatus was 0.117 mg/L. The LC(50) of bulk permethrin to Cx. quinquefasciatus was 0.715 mg/L. Nanopermethrin may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus.
Journal of Hazardous Materials | 2011
S. Sudheer Khan; P. Srivatsan; N. Vaishnavi; Amitava Mukherjee; N. Chandrasekaran
Indiscriminate and increased use of silver nanoparticles (SNPs) in consumer products leads to the release of it into the environment. The fate and transport of SNPs in environment remains unknown. We have studied the interaction of SNPs with extracellular protein (ECP) produced by two environmental bacterial species and the adsorption behavior in aqueous solutions. The effect of pH and salt concentrations on the adsorption was also investigated. The adsorption process was found to be dependent on surface charge (zeta potential). The capping of SNPs by ECP was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The adsorption of ECP on SNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fitted well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicated that pseudo-second-order kinetic equation would better describe the adsorption kinetics. The capping was stable at environmental pH and salt concentration. The destabilization of nanoparticles was observed at alkaline pH. The study suggests that the stabilization of nanoparticles in the environment might lead to the accumulation and transport of nanomaterials in the environment, and ultimately destabilizes the functioning of the ecosystem.
Talanta | 2011
Aswathy Ravindran; Vinayak Mani; N. Chandrasekaran; Amitava Mukherjee
We here in report an extensive study on the development of a highly facile, selective and sensitive colorimetric probe for cysteine detection using silver nanoparticles (Ag NPs). The efficacy of the process relies upon the surface plasmon resonance properties of Ag NPs and the interaction of Ag-cysteine complex with chromium ions (Cr(3+)) in a ratio of 2:1. In the presence of Cr(3+), cysteine was able to induce the aggregation of Ag NPs thereby resulting in a change in yellow colour of the Ag colloid to purple. The reported probe has a limit of detection down to 1 nM which is to the best of our knowledge the lowest ever reported for the colorimetric detection of cysteine. Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to cysteine over other tested amino acids.
Chemical Research in Toxicology | 2011
Sunandan Pakrashi; Swayamprava Dalai; Debabrat Sabat; Suniti Singh; N. Chandrasekaran; Amitava Mukherjee
The cytotoxicity of Al(2)O(3) nanoparticles (NP) at very low exposure levels (1 μg/mL and less) to a dominant bacterial isolate from freshwater (lake water), Bacillus licheniformis, was examined. Sterile lake water was directly used as a test medium or matrix to simulate the freshwater environment. Exposure to 1 μg/mL Al(2)O(3) NP for 2 h caused a 17% decrease in cell viability (as determined by plate count and MTT assay). During the test period, the particles were found to be stable against aggregation in the matrix and exerted a nano-size effect on the exposed test organisms. The decrease in cell viability was proven not to be due to the release of Al(3+) ions from the nanoparticles in the dispersion. The zeta potential and FT-IR analyses suggested that the surface charge based attachment of nanoparticles on to the bacterial cell wall was responsible for flocculation leading to toxicity. The cell wall damage confirmed through SEM and the lipid peroxidation assay also contributed toward toxicity. This study warns of possible ecotoxicity of nanoparticles even at environmentally relevant concentrations. However, detailed studies need to be carried out to establish probable mechanistic aspects of this low concentration toxicity phenomenon.
Colloids and Surfaces B: Biointerfaces | 2011
S. Sudheer Khan; Amitava Mukherjee; N. Chandrasekaran
Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species.
Journal of Hazardous Materials | 2011
K. Sundar; Amitava Mukherjee; Mohammed Sadiq; N. Chandrasekaran
The effluents from tanning industries in and around Palar river basin are the major cause of Cr (III) pollution. Forty-five chromium (III) tolerant bacterial strains were isolated from the Palar river basin. Bacillus subtilis VITSCCr01 showed tolerance up to 1500 mg/l and its Cr (III) bioremoval capacity was 64%. Increasing the concentration of Cr (III) increased exopolysaccharide (EPS) production by the bacteria. FT-IR spectral studies confirmed the presence of polysaccharides in the Cr (III) treated bacteria. Adaptation of Bacillus subtilis VITSCCr01 with higher Cr (III) concentration improved the bioremoval capacity to 85%. SEM-EDX showed that the adapted bacteria accumulated high concentration of chromium. Bacillus subtilis VITSCCr01 could be used as a tool for in situ removal of Cr (III) especially in the tannery polluted environment.
Aquatic Toxicology | 2013
Swayamprava Dalai; Sunandan Pakrashi; M. Joyce Nirmala; Apoorvi Chaudhri; N. Chandrasekaran; A.B. Mandal; Amitava Mukherjee
In the current study, two aspects concerning (i) the cytotoxicity potential of TiO₂ nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO₂ NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration-sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects.