N. Di Marco
Istituto Nazionale di Fisica Nucleare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Di Marco.
Journal of Instrumentation | 2007
L. Arrabito; C. Bozza; S. Buontempo; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; R A Fini; G. Giacomelli; M. Giorgini; G. Grella; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; K. Manai; G. Mandrioli; A. Marotta; P. Migliozzi; P. Monacelli; U. Moser; M.T. Muciaccia; A. Pastore
The OPERA experiment, designed to conclusively prove the existence of ????? oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ??s in the CNGS ?? beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.
Journal of Instrumentation | 2007
L Arrabito; D. Autiero; C. Bozza; S. Buontempo; Y. Caffari; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; S Gagnebin; G. Giacomelli; M. Giorgini; G. Grella; M. Hauger; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; A. Longhin; G. Mandrioli; A. Marotta; J. Marteau; P. Migliozzi
We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/π separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV.
arXiv: Instrumentation and Detectors | 2017
N. Abgrall; A. Abramov; N. Abrosimov; I. Abt; M. Agostini; M. Agartioglu; A. Ajjaq; S. I. Alvis; F. T. Avignone; X. Bai; M. Balata; I. Barabanov; A. S. Barabash; P. J. Barton; L. Baudis; L. Bezrukov; T. Bode; A. Bolozdynya; D. Borowicz; A. J. Boston; H. Boston; S. T.P. Boyd; R. Breier; V. Brudanin; R. Brugnera; M. Busch; M. Buuck; A. Caldwell; T. S. Caldwell; T. Camellato
The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
Physics Reports | 2016
James Battat; I.G. Irastorza; A. Aleksandrov; Takashi Asada; E. Baracchini; J. Billard; G. Bosson; O. Bourrion; J. Bouvier; A. Buonaura; K. Burdge; S. Cebrián; P. Colas; L. Consiglio; T. Dafni; N. D’Ambrosio; C. Deaconu; G. De Lellis; T. Descombes; A. Di Crescenzo; N. Di Marco; Gabriela Druitt; Richard Eggleston; E. Ferrer-Ribas; T. Fusayasu; J. Galán; G. Galati; J. A. García; J. G. Garza; V. Gentile
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
IEEE Transactions on Nuclear Science | 2005
A. Bergnoli; E. Borsato; R. Brugnera; E. Buccheri; A. Candela; E. Carrara; R. Ciesielski; G. Corradi; M. D'Incecco; F.D. Corso; L.D. Esposti; A. Di Giovanni; N. Di Marco; C. Di Troia; S. Dusini; C. Fanin; G. Felici; A. Gambarara; A. Garfagnini; A. Gorin; F. Grianti; C. Gustavino; M. Lindozzi; A. Longhin; F. Mastropietro; A. Mengucci; P. Monacelli; A. Paoloni; G. Paoluzzi; G. Papalino
OPERA is part of the CNGS project and it is an experiment dedicated to the observation of long-baseline numu into nutau oscillations through tau appearance. Resistive Plate Chambers (RPCs) with bakelite electrodes are used to instrument the 2 cm gaps between the magnetized iron slabs of the two spectrometers. The RPC installation ended in may 2004 on the first spectrometer and in march 2005 on the second one. Before the installation, every RPC is subjected to a complete test chain in order to reject the poorer quality detectors. The tests are performed in dedicated facilities to ensure the proper RPC gluing, to measure its electrical properties and to verify the response to cosmic rays and the intrinsic noise levels. We have also tested the long term stability of real size OPERA RPC prototypes operated at cosmic ray fluxes for more than one year. On small size prototypes we are performing studies on the gas mixtures in order to reduce the total charge released in the gas for each detector count. The validation of the installed RPCs has been performed with pure nitrogen. A small part of them has been also tested with the gas mixture Ar/C2H2F4/i-C4H10 /SF6=75.4/20/4/0.6
arXiv: Instrumentation and Methods for Astrophysics | 2016
A. B. Aleksandrov; A. Anokhina; Takashi Asada; D. Bender; I. Bodnarchuk; A. Buonaura; S. Buontempo; M. Chernyavskii; A. Chukanov; L. Consiglio; N. D'Ambrosio; G. De Lellis; M. De Serio; A. Di Crescenzo; N. Di Marco; S. Dmitrievski; T. Dzhatdoev; R. A. Fini; S. Furuya; Giuliana Galati; V. Gentile; S. Gorbunov; Y. Gornushkin; A. M. Guler; H. Ichiki; C. Kamiscioglu; M. Kamiscioglu; Taishi Katsuragawa; Masashi Kimura; N. Konovalova
Nowadays there is compelling evidence for the existence of dark matter in the Universe. A general consensus has been expressed on the need for a directional sensitive detector to confirm, with a complementary approach, the candidates found in conventional searches and to finally extend their sensitivity beyond the limit of neutrino-induced background. We propose here the use of a detector based on nuclear emulsions to measure the direction of WIMP-induced nuclear recoils. The production of nuclear emulsion films with nanometric grains is established. Several measurement campaigns have demonstrated the capability of detecting sub-micrometric tracks left by low energy ions in such emulsion films. Innovative analysis technologies with fully automated optical microscopes have made it possible to achieve the track reconstruction for path lengths down to one hundred nanometers and there are good prospects to further exceed this limit. The detector concept we propose foresees the use of a bulk of nuclear emulsion films surrounded by a shield from environmental radioactivity, to be placed on an equatorial telescope in order to cancel out the effect of the Earth rotation, thus keeping the detector at a fixed orientation toward the expected direction of galactic WIMPs. We report the schedule and cost estimate for a one-kilogram mass pilot experiment, aiming at delivering the first results on the time scale of six years.
Journal of Instrumentation | 2014
A. Alexandrov; Takashi Asada; N. D'Ambrosio; G. De Lellis; A. Di Crescenzo; N. Di Marco; S. Furuya; V. Gentile; K. Hakamata; M. Ishikawa; T. Katsuragawa; K. Kuwabara; S. Machii; T. Naka; F. Pupilli; C. Sirignano; Yuzuru Tawara; V. Tioukov; A. Umemoto; Masahiro Yoshimoto
The most convincing candidate as main constituent of the dark matter in the Universe consists of weakly interacting massive particles (WIMP). WIMPs must be electrically neutral and interact with a very low cross-section (σ < 10−40 cm2) which makes them detectable in direct searches only through the observation of nuclear recoils induced by the WIMP rare scatterings. In the experiments carried out so far, recoiled nuclei are searched for as a signal over a background produced by Compton electrons and neutron scatterings. Signal found by some experiments have not been confirmed by other techniques. None of these experiments is able to detect the track, typically less than one micron long, of the recoiled nucleus and therefore none is able to directly detect the incoming direction of WIMPs. We propose an R&D program for a new experimental method able to observe the track of the scattered nucleus based on new developments in the nuclear emulsion technique: films with nanometric silver grains, expansion of emulsions and very fast completely automated scanning systems. Nuclear emulsions would act both as the WIMP target and as the tracking detector able to reconstruct the direction of the recoiled nucleus. This unique characteristic would provide a new and unambiguous signature of the presence of the dark matter in our galaxy.
New Journal of Physics | 2010
S. Aoki; A. Ariga; L Arrabito; D. Autiero; M. Besnier; C. Bozza; S. Buontempo; E. Carrara; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; Y Déclais; M. De Serio; F. Di Capua; A. Di Crescenzo; D. Di Ferdinando; N. Di Marco; D. Duchesneau; A. Ereditato; Luigi Salvatore Esposito; T. Fukuda; G. Giacomelli; M. Giorgini; G. Grella; K. Hamada; M. Ieva; F. Juget; N. Kitagawa; J Knuesel
The PEANUT experiment was designed to study the NuMi neutrino beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a micrometric tracking device and are interleaved with lead plates used as passive material. The detector is designed to precisely reconstruct the topology of neutrino interactions and hence to measure the different contributions to the cross section. We present here the full reconstruction and analysis of 147 neutrino interactions and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross section at the energies of the NuMi neutrino beam. This technique could be applied for beam monitoring in future neutrino facilities, and this paper shows its proof-of-principle.
Journal of Instrumentation | 2014
N. D'Ambrosio; N. Di Marco; F. Pupilli; A. Alexandrov; G. De Lellis; A. Di Crescenzo; V. Tioukov; C. Sirignano; T. Naka; Takashi Asada; T. Katsuragawa; Masahiro Yoshimoto; K. Hakamata; M. Ishikawa; K. Kuwabara; A. Umemoto; S. Furuya; S. Machii; Yuzuru Tawara
The use of nuclear emulsions in particle physics dates back to the very early stages. They are now used when an extremely high position resolution is required like in the search for short lived particles. The capability to detect nuclear recoils induced by WIMPs relies on the possibility to detect sub-micrometric trajectories. Recently nuclear emulsions with silver grains of 20 nm diameter were developed, opening the way for the reconstruction of nanometric particles. This challenging purpose requires the development of fully automated optical readout systems for a fast scanning of the emulsion films. This is meant for a pre-selection of recoil candidates. Once candidates have been identified, a fine grained X-ray microscope is used to detect the grains making up the tracks. We report here the present results on the current development along this line.
European Physical Journal C | 2018
N. Agafonova; A. B. Aleksandrov; A. Anokhina; Takashi Asada; V. V. Ashikhmin; I. Bodnarchuk; A. Buonaura; M. Chernyavskii; A. Chukanov; N. D’Ambrosio; G. De Lellis; A. Di Crescenzo; N. Di Marco; S. Dmitrievski; R. Enikeev; R. A. Fini; Giuliana Galati; V. Gentile; S. Gorbunov; Y. Gornushkin; A. M. Guler; H. Ichiki; Taishi Katsuragawa; N. Konovalova; Ken’ichi Kuge; A. Lauria; K. Y. Lee; L. Lista; A. Malgin; A. Managadze
Direct Dark Matter searches are nowadays one of the most fervid research topics with many experimental efforts devoted to the search for nuclear recoils induced by the scattering of Weakly Interactive Massive Particles (WIMPs). Detectors able to reconstruct the direction of the nucleus recoiling against the scattering WIMP are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Exploiting directionality would also prove the galactic origin of Dark Matter with an unambiguous signal-to-background separation. Indeed, the angular distribution of recoiled nuclei is centered around the direction of the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we present the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and of optical read-out systems reaching unprecedented nanometric resolution.