N. Duane Loh
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Duane Loh.
Acta Crystallographica Section D-biological Crystallography | 2012
Raymond G. Sierra; Hartawan Laksmono; Jan Kern; Rosalie Tran; Johan Hattne; Roberto Alonso-Mori; Benedikt Lassalle-Kaiser; Carina Glöckner; Julia Hellmich; Donald W. Schafer; Nathaniel Echols; Richard J. Gildea; Ralf W. Grosse-Kunstleve; Jonas A. Sellberg; Trevor A. McQueen; Alan Fry; Marc Messerschmidt; A. Miahnahri; M. Marvin Seibert; Christina Y. Hampton; Dmitri Starodub; N. Duane Loh; Dimosthenis Sokaras; Tsu Chien Weng; Petrus H. Zwart; Pieter Glatzel; Despina Milathianaki; William E. White; Paul D. Adams; Garth J. Williams
An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 µl min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min(-1) and diffracted to beyond 4 Å resolution, producing 14,000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.
Journal of Physical Chemistry Letters | 2015
Hartawan Laksmono; Trevor A. McQueen; Jonas A. Sellberg; N. Duane Loh; Congcong Huang; Daniel Schlesinger; Raymond G. Sierra; Christina Y. Hampton; Dennis Nordlund; M. Beye; Andrew V. Martin; Anton Barty; M. Marvin Seibert; Marc Messerschmidt; Garth J. Williams; Sébastien Boutet; Katrin Amann-Winkel; Thomas Loerting; Lars G. M. Pettersson; Michael J. Bogan; Anders Nilsson
We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103–104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water’s diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106–107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed “fragile-to-strong” transition anomaly in water.
Scientific Data | 2016
Anna Munke; Jakob Andreasson; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Richard Bean; Peter Berntsen; Johan Bielecki; Sébastien Boutet; Maximilian Bucher; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Veit Elser; Petra Fromme; Janos Hajdu; Max F. Hantke; Akifumi Higashiura; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Hemanth K. N. Reddy; Ti Yen Lan; Daniel S. D. Larsson; Haiguang Liu; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Optics Express | 2013
Hyung Joo Park; N. Duane Loh; Raymond G. Sierra; Christina Y. Hampton; Dmitri Starodub; Andrew V. Martin; Anton Barty; Andrew Aquila; Joachim Schulz; Jan Steinbrener; Robert L. Shoeman; Lukas Lomb; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; Artem Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Guenter Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; Mark S. Hunter; Lars Gumprecht
Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
Scientific Reports | 2016
Chun Hong Yoon; M.V. Yurkov; E.A. Schneidmiller; Liubov Samoylova; Alexey V. Buzmakov; Zoltan Jurek; Beata Ziaja; Robin Santra; N. Duane Loh; T. Tschentscher; Adrian P. Mancuso
The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.
Optics Express | 2013
N. Duane Loh; Dmitri Starodub; Lukas Lomb; Christina Y. Hampton; Andrew V. Martin; Raymond G. Sierra; Anton Barty; Andrew Aquila; Joachim Schulz; Jan Steinbrener; Robert L. Shoeman; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; Artem Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Guenter Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; Mark S. Hunter; Lars Gumprecht; Nicola Coppola
Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
Journal of Physical Chemistry Letters | 2017
Andrew J. Amaya; Harshad Pathak; Viraj P. Modak; Hartawan Laksmono; N. Duane Loh; Jonas A. Sellberg; Raymond G. Sierra; Trevor A. McQueen; Matt J. Hayes; Garth J. Williams; Marc Messerschmidt; Sébastien Boutet; Michael J. Bogan; Anders Nilsson; Claudiu A. Stan; Barbara E. Wyslouzil
Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ∼225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ± 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ∼1 μs time scale in single nanodroplets.
Journal of Applied Crystallography | 2016
Kartik Ayyer; Ti-Yen Lan; Veit Elser; N. Duane Loh
A description is given of a single-particle X-ray imaging reconstruction and simulation package using the expand–maximize–compress algorithm, named Dragonfly.
Scientific Data | 2017
Hemanth K. N. Reddy; Chun Hong Yoon; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Peter Berntsen; Johan Bielecki; Sergey Bobkov; Maximilian Bucher; Gabriella Carini; Sebastian Carron; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Tomas Ekeberg; Petra Fromme; Janos Hajdu; Max Felix Hanke; Philip Hart; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Ruslan Kurta; Daniel S. D. Larsson; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso; Kerstin Mühlig
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
IUCrJ | 2017
Benedikt J. Daurer; Kenta Okamoto; Johan Bielecki; Filipe R. N. C. Maia; Kerstin Mühlig; M. Marvin Seibert; Max F. Hantke; Carl Nettelblad; W. Henry Benner; Martin Svenda; Nicusor Timneanu; Tomas Ekeberg; N. Duane Loh; Alberto Pietrini; Alessandro Zani; Asawari D. Rath; Daniel Westphal; Richard A. Kirian; Salah Awel; Max O. Wiedorn; Gijs van der Schot; Gunilla H. Carlsson; Dirk Hasse; Jonas A. Sellberg; Anton Barty; Jakob Andreasson; Sebastian Boutet; Garth J. Williams; Jason E. Koglin; Inger Andersson
Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, experimental strategies for this idea are explored based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.