N. E. S. Sazali
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. E. S. Sazali.
Functional Materials Letters | 2017
Mohamad Faizal Yusman Mohd Hanappi; Mohamad Deraman; Mohd. Suleman; Najah Syahirah Mohd Nor; N. E. S. Sazali; E. Hamdan; Nurul Syazwani Moh Tajuddin; N.H. Basri; Mohd Redwani Mohd Jasni; Mohd Amir Radhi Othman
In this paper, the suitability of aqueous KOH and H2SO4 electrolytes in terms of ionic size, mobility, conductivity and energy of electrolyte ions with the porosity of activated carbon electrodes are demonstrated. These parameters of ions (K+, OH−, H+, SO42−) are found to affect the overall performances of supercapacitor cells as observed from the results of EIS, CV and GCD studies. The cell using H2SO4 electrolyte exhibits better performance with relatively low value of charge transfer resistance (0.57Ω), overall cell resistance, 19Ω (at 10mHz) and high value of specific capacitance 547F g−1 (at 1mV s−1), specific energy 10W h kg−1 (at 0.5A g−1) and specific power, 490W kg−1. These results show that aqueous acid electrolyte is more compatible with carbon electrodes which could be due to the higher ionic energies of H+ and SO42− ions.
Journal of Physics: Conference Series | 2016
Mohamad Deraman; N. E. S. Sazali; M. F. Y. M. Hanappi; N. S. M. Tajuddin; E. Hamdan; M. Suleman; Mohd Amir Radhi Othman; Ramli Omar; M A Hashim; N.H. Basri; Najah Syahirah Mohd Nor; B.N.M. Dolah; A M Noor; Mohamad Redwani Mohd Jasni
Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ~(1-3%), ~85% and ~30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ~4400 to ~3400 m2/g, corresponding to the specific capacitance between ~500 to ~400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature.
THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016
N. E. S. Sazali; M. Deraman; R. Omar; M. A. R. Othman; M. Suleman; S. A. Shamsudin; N. S. M. Tajuddin; M. F. Y. M. Hanappi; E. Hamdan; Najah Syahirah Mohd Nor; N.H. Basri
In this study, we report the preparation of turbostratic-carbon/graphene from biomass amylose film by carbonization (N2 gas) and activation (CO2 gas) over different temperatures 600, 700, 800, 900, and 1000 °C, respectively. The Raman spectroscopy results of the produced samples show that the values of the ID/IG ratio ranging from 0.75 to 0.99 are comparable to that of the commercial multilayer graphene and KOH treated multilayer graphene. The X-ray diffraction results of the produced samples show that a small decrease in the d002 (∼0.62 %) and d100 (∼0.57 %) values and a larger decrease in Lc (∼8.6 %) and La (∼27.2 %) values occurs as the carbonization and activation temperature increases, indicating that the increase in temperature has an effect on the growth of microcrystallites during carbonization and activation. This study demonstrates the potential of the amylose film to be used as a precursor for producing graphene flakes.
PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015) | 2016
Mohamad Redwani Mohd Jasni; M. Deraman; M. Suleman; E. Hamdan; N. E. S. Sazali; Najah Syahirah Mohd Nor; S. A. Shamsudin
Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graph...
Materials Science Forum | 2016
Mohamad Redwani Mohd Jasni; Mohamad Deraman; E. Hamdan; N. E. S. Sazali; Najah Syahirah Mohd Nor; M. M. Ishak; N.H. Basri; Ramli Omar; Mohd Amir Radhi Othman; Roslinda Zulkifli; Rusli Daik; M. Suleman
Activated carbon monoliths (ACMs) electrodes for supercapacitor application were prepared from the green monoliths (GMs) containing KOH treated self-adhesive carbon grains (SACG) added with KOH treated graphene at its weight percentages of 0, 2, 4, 6, 8 and 10 %, respectively. The SACG were prepared from fibers of oil palm empty fruit bunches by a low carbonization temperature method. The ACMs were produced by the carbonization and activation of the GMs. The surface area, structure and specific capacitance of the ACMs electrodes were found affected by the graphene addition. The highest surface area of the ACMs electrode was observed for the addition of 6% graphene, which corresponds to the carbon turbostratic structure of the ACMs electrodes with the values of its crystallites interlayers spacing (d002 and d100) at 0.352 nm and 0.205 nm, and its crystallites stack-width (La) and stack-height (Lc) at 43.21 nm and 10.06 nm, respectively. The specific capacitance of the cell using this electrode was 112 F / g.
Journal of Physics: Conference Series | 2016
M. Suleman; Mohamad Deraman; Mohd Amir Radhi Othman; Ramli Omar; M A Hashim; N.H. Basri; Najah Syahirah Mohd Nor; B.N.M. Dolah; M. F. Y. M. Hanappi; E. Hamdan; N. E. S. Sazali; N. S. M. Tajuddin; Mohamad Redwani Mohd Jasni
We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).
2017 UKM FST Postgraduate Colloquium | 2018
M. F. Y. M. Hanappi; M. Deraman; M. Suleman; M. A. R. Othman; N.H. Basri; Najah Syahirah Mohd Nor; E. Hamdan; N. E. S. Sazali; N. S. M. Tajuddin
Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from th...
THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016
E. Hamdan; M. Deraman; M. Suleman; Najah Syahirah Mohd Nor; N.H. Basri; M. F. Y. M. Hanappi; N. E. S. Sazali; N. S. M. Tajuddin; R. Omar; M. A. R. Othman; S. A. Shamsudin
In this study, we produced pre-carbonized date pits (PDP) and self-adhesive carbon grains (SACGs) from oil palm empty fruit bunches (EFB) by a low temperature (200°C for DP and 280°C for SACGs, respectively) carbonization method followed by KOH treatment to obtain KOH treated PDP (T-PDP) and KOH treated SACGs (T-SACGs). Four sets of green monolith (GMs) denoted as GM-A, GM-B, GM-C and GM-D were prepared respectively from SACGs (100 wt. %), mixture of PDP and SACGs (50:50 wt. %), T-SACGs (100 wt. %), and mixture of T-SACGs and T-PDP (50:50 wt. %), respectively. From these GMs the respective activated carbon monolith (ACMs) electrodes namely ACM-A, ACM-B, ACM-C and ACM-D were prepared via carbonization (N2 carbonization) and activation (CO2 environment). These ACMs electrodes were used to fabricate the corresponding EDLC cells: Cell-A, Cell-B, Cell-C and Cell-D, respectively. The electrochemical impedance spectroscopy tests conducted on the cells found that the Cell-D showed the maximum value of specific ca...
THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016
Najah Syahirah Mohd Nor; M. Deraman; M. Suleman; M. D. M. Norizam; N.H. Basri; N. E. S. Sazali; E. Hamdan; M. F. Y. M. Hanappi; N. S. M. Tajuddin; M. A. R. Othman; S. A. Shamsudin; R. Omar
Carbon based supercapacitor electrodes from composite of binderless activated carbon and graphene as a conductive additive were fabricated with various amount of graphene (0, 2, 4, 6, 8 and 10 wt%). Graphene was mixed in self-adhesive carbon grains produced from pre-carbonized powder derived from fibers of oil palm empty fruit bunches and converted into green monoliths (GMs). The GMs were carbonized (N2) and activated (CO2) to produce activated carbon monoliths (ACMs) electrodes. Porosity characterizations by nitrogen adsorption-desorption isotherm method shows that the pore characteristics of the ACMs are influenced by the graphene additive. The results of galvanostatic charge-discharge tests carried out on the supercapacitor cells fabricated using these electrodes shows that the addition of graphene additive (even in small amount) decreases the equivalent series resistance and enhances the specific power of the cells but significantly lowers the specific capacitance. The supercapacitor cell constructed ...
International Journal of Electrochemical Science | 2015
Sepideh Soltaninejad; Rusli Daik; Mohamad Deraman; Y. C. Chin; Najah Syahirah Mohd Nor; N. E. S. Sazali; E. Hamdan; Mohamad Redwani Mohd Jasni; M. M. Ishak; M. Noroozi; M. Suleman