Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. E. Suzina is active.

Publication


Featured researches published by N. E. Suzina.


Microbiology | 2006

Adaptogenic functions of extracellular autoregulators of microorganisms

G. I. El'-Registan; A. L. Mulyukin; Yu. A. Nikolaev; N. E. Suzina; V. F. Gal’chenko; V. I. Duda

Information about the functions of extracellular autoregulators, which adapt microorganisms to the stresses “scheduled” in the development cycle of microbial cultures (stresses of new medium, starvation, or space exhaustion (high cell density)) is summarized in the review. In a number of bacteria and yeasts, derivatives of alkylhydroxybenzenes (AHB), particularly of the class of alkyl resorcinols, act as autoregulators with adaptogenic functions. The chemical structure of AHB determines their amphiphility; capacity for physical and chemical interaction with membrane lipids, proteins, and DNA; properties as natural modifiers of biological membranes and enzymes; and the expression of antioxidant activity. Increase of AHB concentration up to the critical level (10−5-10−4 M) results in cessation of cell division and in transition of the microbial culture to the stationary phase; further increase to 10−4-10−3 M induces a transition of some of the cells of a post-stationary culture to the anabiotic state with the formation of cystlike resting cells (CRC), even in non-spore-forming bacteria. AHB participate in the regulation of the phenotypic variability of bacteria. The dynamics of extra-and intracellular concentrations of AHB in growing microbial cultures and the polymodality of their effect determine the adaptogenic functions of AHB as autoinhibitors of culture growth, autoinducers of anabiosis, and autoinhibitors of germination of resting forms. Manifestation of any given function depends on the concentration of AHB, the physiological state of the recipient cells, and on environmental factors. The species nonspecificity of AHB effects points to their significant role in the regulation of the development and functioning of microbial communities.


Microbiology | 2009

Dormant forms of Mycobacterium smegmatis with distinct morphology.

Aleksey M. Anuchin; A. L. Mulyukin; N. E. Suzina; V. I. Duda; G. I. El'-Registan; Arseny S. Kaprelyants

Cultivation of Mycobacterium smegmatis cells in a nitrogen-limited minimal medium (SR-1) followed by prolonged storage at room temperature without shaking resulted in the gradual accumulation of morphologically distinct ovoid forms characterized by (i) low metabolic activity; (ii) elevated resistance to antibiotics and to heat treatment; and (iii) inability to produce colonies on standard agar plates (non-platable cells). Detailed microscopic examination confirmed that ovoid cells possessed an intact cell envelope, specific fine structure and large electron-transparent bodies in the cytoplasm. Cell staining with Nile red and analysis of the lipid content by TLC revealed the presence of significant amounts of apolar lipids in these bodies. The ovoid forms could be stored for significant periods (up to 5 months) and resuscitated afterwards in a modified Sautons medium. Importantly, resuscitation of ovoid cells was accompanied by their transformation into the typical rod-shaped cells. We suggest that the observed ovoid cells represent dormant forms, resembling morphologically distinct cells of Mycobacterium tuberculosis previously isolated from tuberculosis patients and infected animals.


Microbiology | 2004

[Ultrastructure of resting cells of some non-spore-forming bacteria].

N. E. Suzina; A. L. Mulyukin; A. N. Kozlova; A. P. Shorokhova; V. V. Dmitriev; E. S. Barinova; O. N. Mokhova; G. I. El'-Registan; V. I. Duda

Using electron microscopy (ultrathin sections and freeze-fractures), we investigated the ultrastructure of the resting cells formed in cultures of Micrococcus luteus, Arthrobacter globiformis, and Pseudomonas aurantiaca under conditions of prolonged incubation (up to 9 months). These resting cells included cystlike forms that were characterized by a complex cell structure and the following ultrastructural properties: (i) a thickened or multiprofiled cell wall (CW), typically made up of a layer of the preexisting CW and one to three de novo synthesized murein layers; (ii) a thick, structurally differentiated capsule; (iii) the presence of large intramembrane particles (d = 180–270 Å), occurring both on the PF and EF faces of the membrane fractures of M. luteus and A. globiformis; (iv) a peculiar structure of the cytoplasm, which was either fine-grained or lumpy (coarse-grained) in different parts of the cell population; and (v) a condensed nucleoid. Intense formation of cystlike cells occurred in aged (2- to 9-month-old) bacterial cultures grown on diluted complex media or on nitrogen-, carbon-, and phosphorus-limited synthetic media, as well as in cell suspensions incubated in media with sodium silicate. The general morphological properties, ultrastructural organization, and physiological features of cystlike cells formed during the developmental cycle suggest that constitutive dormancy is characteristic of non-spore-forming bacteria.


International Journal of Systematic and Evolutionary Microbiology | 2000

Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium.

Elena V. Pikuta; Anatoly M. Lysenko; N. E. Suzina; G. A. Osipov; B. B. Kuznetsov; T. P. Tourova; V. Akimenko; K. Laurinavichius

A new moderately thermophilic, alkaliphilic, sulfate-reducing, chemolithoheterotrophic bacterium, strain S1T, was isolated from a mixed cow/pig manure with neutral pH. The bacterium is an obligately anaerobic, non-motile, Gram-positive, spore-forming curved rod growing within a pH range of 8.0-9.15 (optimal growth at pH 8.6-8.7) and temperature range of 30-58 degrees C (optimal growth at 50-55 degrees C). The optimum NaCl concentration for growth is 0.1%. Strain S1T is an obligately carbonate-dependent alkaliphile. The G+C content of the DNA is 40.9 mol%. A limited number of compounds are utilized as electron donors, including H2+acetate, formate, ethanol, lactate and pyruvate. Sulfate, sulfite and thiosulfate, but not sulfur or nitrate, can be used as electron acceptors. Strain S1T is able to utilize acetate or yeast extract as sources of carbon. Analysis of the 16S rDNA sequence allowed strain S1T (= DSM 12257T) to be classified as a representative of a new species of the genus Desulfotomaculum, Desulfotomaculum alkaliphilum sp. nov.


International Journal of Systematic and Evolutionary Microbiology | 2012

Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008

Svetlana N. Dedysh; Irina S. Kulichevskaya; Yulia M. Serkebaeva; Mityaeva; V.V. Sorokin; N. E. Suzina; W.I.C. Rijpstra; J.S. Sinninghe Damsté

An aerobic, pink-pigmented, chemo-organotrophic bacterium, designated strain SN10(T), was isolated from a methanotrophic enrichment culture obtained from an acidic Sphagnum peat. This isolate was represented by Gram-negative, non-motile rods that multiply by normal cell division and form rosettes. Strain SN10(T) is an obligately acidophilic, mesophilic bacterium capable of growth at pH 3.2-6.6 (with an optimum at pH 4.7-5.2) and at 6-32 °C (with an optimum at 20-24 °C). The preferred growth substrates are sugars and several heteropolysaccharides of plant and microbial origin, such as pectin, lichenan, fucoidan and gellan gum. While not being capable of growth on C(1) compounds, strain SN10(T) can develop in co-culture with exopolysaccharide-producing methanotrophs by utilization of their capsular material. The major fatty acids determined in strain SN10(T) using the conventional lipid extraction procedure are iso-C(15:0) and C(16:1)ω7c. Upon hydrolysis of total cell material, substantial amounts of the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (isodiabolic acid) were also detected. The polar lipids are two phosphohexoses, phosphatidylethanolamine, phosphatidylglycerol and several phospholipids of unknown structure. The major quinone is MK-8. Pigments are carotenoids. The G+C content of the DNA is 60.7 mol%. Strain SN10(T) forms a separate lineage within subdivision 1 of the phylum Acidobacteria and displays 94.0-95.4% 16S rRNA gene sequence similarity to members of the genera Edaphobacter and Granulicella, 93.0-93.7% similarity to members of the genus Terriglobus and 92.2-92.3 % similarity to the type strains of Telmatobacter bradus and Acidobacterium capsulatum. Therefore, strain SN10(T) is classified within a novel genus and species, for which the name Bryocella elongata gen. nov., sp. nov. is proposed. Strain SN10(T) (=LMG 25276(T) =DSM 22489(T)) is the type strain of Bryocella elongata. An emended description of Edaphobacter aggregans Koch et al. 2008 is also given.


Microbiology | 2004

Methanotrophs and methylobacteria are found in woody plant tissues within the winter period

N. V. Doronina; E. G. Ivanova; N. E. Suzina; Yu. A. Trotsenko

Samples of tree seeds, buds, and needles collected within the winter period at ambient temperatures from −11 to −17°C were analyzed for the presence of methylotrophic microflora. Thin sections of blue spruce needles were found to contain bacteria morphologically close to pink-pigmented methylobacteria. The methylobacteria that were isolated in pure cultures from samples of linden seeds and buds and pine and blue spruce needles, as well as of lilac, maple, and apple buds, were classified into the genera Methylobacterium and Paracoccus based on the data of morphological studies, enzyme assay, and DNA-DNA hybridization analysis. The methanotrophs that were isolated in pure cultures from samples of linden buds and blue spruce needles were referred to the genus Methylocystis based on the data of morphological studies, enzyme assay, DNA-DNA hybridization, and the phylogenetic analysis of the particulate methane monooxygenase gene pmoA sequences. The inference is made that aerobic methylotrophic bacteria are permanently associated with plants. At the beginning of the vegetative period in spring, the phyllosphere of coniferous and deciduous trees is colonized by methylotrophic bacteria that have wintered inside plant tissues.


Microbiology | 2012

Ultramicrobacteria: Formation of the concept and contribution of ultramicrobacteria to biology

V. I. Duda; N. E. Suzina; V. N. Polivtseva; A. M. Boronin

Ultramicrobacteria (UMB) are species of the domain Bacteria characterized by very small sizes of proliferating cells (less than 0.1 μm3 in volume) and small genomes (3.2 to 0.58 Mb). Some authors use the term nanobacteria as a synonym of UMB. Several tens of UMB species have been isolated from various natural habitats: sea water, soil, silt, Greenland ice sheet, permafrost soils, and intestines of humans and insects. Under laboratory conditions, they are cultivated on different nutrient media. In the second prokaryotic domain, the Archaea, ultrasmall forms (ultramicroarchaea) have also been described, including nanoarchaea (members of the genus Nanoarchaeum) with a cell volume of less than 0.1 μm3. The term nanobacteria is used in the literature also to denote ultrasmall bacterium-like particles occurring in rocks, sands, soils, deep sub-surface layers, meteorites, and clinical samples. The systematic position and the capacity for self-reproduction of these particles are still unclear. The cultured UMB forms are characterized by highly diverse morphology, ultrastructural organization, physiology, biochemistry, and ecology. UMB form three groups according to the type of cell wall structure and the reaction to Gram staining: (1) gram-negative, (2) gram-positive, and (3) cell wall-lacking. Their cells divide by constriction, septation, or budding. The unique processes performed by UMB are dehalorespiration and obligate or facultative epibiotic parasitism. The UMB that synthesize organic compounds in ocean waters with the involvement of proteorhodopsin play a great role in the biosphere. UMB have been found in seven large phylogenetic groups of prokaryotes, where their closest relatives are organisms with larger cells typical of bacteria, which is evidence of the polyphyletic origin of the currently known UMB species and the reductive mode of their evolution.


Microbiology | 2008

Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas

A. L. Mulyukin; N. E. Suzina; V. I. Duda; G. I. El’-Registan

Cystlike resting cells (CRC) of non-spore-forming gram-negative bacteria of the genus Pseudomonas, P. aurantiaca and P. fluorescens, were obtained and characterized for the first time; their physiological and morphological diversity was demonstrated. The following properties were common for all the revealed types of CRC as dormant forms: (1) long-term (up to 6 months or longer) maintenance of viability in the absence of culture growth and cell respiration; (2) absence of an experimentally detectable level of metabolism; (3) higher resistance to damage and autolysis under the action of provoking factors than in metabolically active vegetative cells; and (4) specific features of ultrastructural organization absent in vegetative cells: thickened and lamellar envelopes, clumpy structure of the cytoplasm, and condensed DNA in nucleoid. The differences in various types of CRC concern the thickness and lamellar structure of cell envelopes, as well as the presence and thickness of the capsular layer. In particular, forms ultrastructurally similar to typical bacterial cysts were revealed in pseudomonad populations growing on soil agar. Physiological diversity was revealed in different levels of viability preservation and thermal resistance in various types of CRC and depended on the conditions of their formation. The optimal conditions and procedures for obtaining P. aurantiaca and P. fluorescens CRC that retain the ability to form colonies on standard nutrient media are as follows: (1) a twofold decrease of nitrogen content in the growth medium; (2) an increased level of anabiosis autoinducer (C12-AHB, 10−4 M) in stationary cultures; (3) transfer of the cells from stationary cultures to a starvation medium with silica; (4) cultivation in soil extract; and (5) development of cultures on soil agar. The CRC from the cultures grown in soil extract or starvation medium with silica proved to be resistant to heat treatment (60°C, 5 min). In the CRC formed in nitrogen-limited media, the degree of heat resistance increased at longer incubation (1.5 to 6 months). CRCs on soil agar surface were resistant to desiccation. The ultrastructure of the morphologically varied types of P. aurantiaca CRC formed under simulated natural conditions is described for the first time. The data on the intraspecies diversity of pseudomonad dormant forms contribute to the concept of plasticity of the life style and adaptive reactions that ensure survival of these bacteria in unfavorable environmental conditions.


Microbiology | 2002

Physiological, Biochemical, and Cytological Characteristics of a Haloalkalitolerant Methanotroph Grown on Methanol

B. Ts. Eshinimaev; V. N. Khmelenina; V. G. Sakharovskii; N. E. Suzina; Yu. A. Trotsenko

The halotolerant alkaliphilic methanotroph Methylomicrobium buryatense 5B is capable of growth at high methanol concentrations (up to 1.75 M). At optimal values of pH and salinity (pH 9.5 and 0.75% NaCl), the maximum growth rate on 0.25 M methanol (0.2 h–1) was twice as high as on methane (0.1 h–1). The maximum growth rate increased with increasing medium salinity and pH. The growth of the bacterium on methanol was accompanied by a reduction in the degree of development of intracytoplasmic membranes, the appearance of glycogen granules in cells, and the accumulation of formaldehyde, formate, and an extracellular glycoprotein at concentrations of 1.2 mM, 8 mM, and 2.63 g/l, respectively. The glycoprotein was found to contain 23% protein and 77% carbohydrates, the latter being dominated by glucose, mannose, and aminosugars. The major amino acids were glutamate, aspartate, glycine, valine, and isoleucine. The glycoprotein content rose to 5 g/l when the concentration of potassium nitrate in the medium was augmented tenfold. The activities of sucrose-6-phosphate synthase, glycogen synthase, and NADH dehydrogenase in methanol-grown cells were higher than in methane-grown cells. The data obtained suggest that the high methanol tolerance of M. buryatense 5B is due to the utilization of formaldehyde for the synthesis of sucrose, glycogen, and the glycoprotein and to the oxidation of excess reducing equivalents through the respiratory chain.


Microbiology | 2004

New thermophilic methanotrophs of the genus Methylocaldum

B. Ts. Eshinimaev; K. A. Medvedkova; V. N. Khmelenina; N. E. Suzina; George A. Osipov; Anatoly M. Lysenko; Yu. A. Trotsenko

Two pure cultures of obligate methanotrophs, strains H-11 and O-12, growing in the temperature range from 30 to 61°C with a optimum at 55°C were isolated from samples of silage and manure. Based on the results of analysis of the 16S rRNA genes and genes of membrane-bound methane monooxygenase, as well as on phenotypic properties, the isolates were assigned to the genus Methylocaldum. Significant temperature-dependent variations in morphology and phospholipid and fatty acid composition were revealed. Both strains assimilated methane carbon via the ribulose monophosphate, serine, and ribulose bisphosphate pathways. The activity of hexulosephosphate synthase was independent of the cultivation temperature; however, the activities of hydroxypyruvate reductase and ribulose bisphosphate carboxylase were higher in cells grown at 55°C than in cells grown at 37°C, indicating the important roles of the serine and ribulose bisphosphate pathways in the thermoadaptation of the strains under study. NH4+ assimilation occurred through reductive amination of α-ketoglutarate and via the glutamate cycle. The relationship between the physiological and biochemical peculiarities of the isolates and their thermophilic nature is discussed.

Collaboration


Dive into the N. E. Suzina's collaboration.

Top Co-Authors

Avatar

V. I. Duda

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. L. Mulyukin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. V. Dmitriev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. P. Shorokhova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

G. I. El'-Registan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu. A. Trotsenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. M. Boronin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. N. Khmelenina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. N. Polivtseva

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge