Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Hell is active.

Publication


Featured researches published by N. Hell.


Nature | 2012

An unexpectedly low oscillator strength as the origin of the Fe xvii emission problem

Sven Bernitt; G. V. Brown; Jan K. Rudolph; René Friedrich Steinbrügge; A. Graf; Marcel Leutenegger; Sascha W. Epp; Sita Eberle; K. Kubicek; V. Mäckel; M. C. Simon; E. Träbert; E. W. Magee; C. Beilmann; N. Hell; S. Schippers; A. Müller; S. M. Kahn; A. Surzhykov; Zoltan Harman; Christoph H. Keitel; J. Clementson; F. S. Porter; W. F. Schlotter; J. J. Turner; Joachim Ullrich; P. Beiersdorfer; J. R. Crespo López-Urrutia

Highly charged iron (Fe16+, here referred to as Feu2009xvii) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Feu2009xvii spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Feu2009xvii line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.


Physical Review Letters | 2013

X-Ray Resonant Photoexcitation: Linewidths and Energies of Kα Transitions in Highly Charged Fe Ions

Jan K. Rudolph; Sven Bernitt; Sascha W. Epp; René Friedrich Steinbrügge; C. Beilmann; G. V. Brown; Sita Eberle; A. Graf; Zoltan Harman; N. Hell; Maurice A. Leutenegger; A. Müller; K. Schlage; H.-C. Wille; H. Yavaş; J. Ullrich; José R. Crespo López-Urrutia

Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.


Review of Scientific Instruments | 2014

Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

P. Beiersdorfer; E. W. Magee; G. V. Brown; N. Hell; E. Träbert; K. Widmann

A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.


Review of Scientific Instruments | 2016

Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

N. Hell; P. Beiersdorfer; E. W. Magee; G. V. Brown

We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10u2009000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instruments spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.


Review of Scientific Instruments | 2016

Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

P. Beiersdorfer; E. W. Magee; N. Hell; G. V. Brown

We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10u2009000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.


Review of Scientific Instruments | 2016

Experimentally determining the relative efficiency of spherically bent germanium and quartz crystals

G. V. Brown; P. Beiersdorfer; N. Hell; E. W. Magee

We have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (101̄1) crystal (2d = 6.687 Å) and a spherically bent germanium (111) crystal (2d = 6.532 Å). L-shell X-ray photons from highly charged molybdenum ions generated in EBIT-I were simultaneously focussed and Bragg reflected by each crystal, both housed in a single spectrometer, onto a single CCD X-ray detector. The flux from each crystal was then directly compared. Our results show that the germanium crystal has a reflection efficiency significantly better than the quartz crystal, however, the energy resolution is significantly worse. Moreover, we find that the spatial focussing properties of the germanium crystal are worse than those of the quartz crystal. Details of the experiment are presented, and we discuss the advantages of using either crystal on a streak-camera equipped OHREX spectrometer.


Review of Scientific Instruments | 2018

High resolution, high signal-to-noise crystal spectrometer for measurements of line shifts in high-density plasmas

P. Beiersdorfer; E. W. Magee; G. V. Brown; N. Hell; A. McKelvey; R. Shepherd; D. J. Hoarty; C. R. D. Brown; M. P. Hill; L. M. R. Hobbs; S. F. James; L. Wilson

The Orion high-resolution x-ray (OHREX) spectrometer has been a successful tool for measuring the shapes of density-broadened spectral lines produced in short-pulse heated plasmas at the Orion laser facility. We have recently outfitted the instrument with a charge-couple device (CCD) camera, which greatly increased the accuracy with which we can perform line-shift measurements. Because OHREX is located on the outside of the Orion target chamber, no provisions for the shielding of electromagnetic pulses are required. With the CCD, we obtained a higher signal-to-noise ratio than we previously obtained with an image-plate detector. This allowed us to observe structure in the image produced by the diffraction from the two OHREX crystals, which was highly reproducible from shot to shot. This structure will ultimately limit the accuracy of our spectroscopic measurements.


Review of Scientific Instruments | 2018

Measurements of the effective electron density in an electron beam ion trap using extreme ultraviolet spectra and optical imaging

T. P. Arthanayaka; P. Beiersdorfer; G. V. Brown; M. Hahn; N. Hell; T. E. Lockard; Daniel Wolf Savin

In an electron beam ion trap (EBIT), the ions are not confined to the electron beam, but rather oscillate in and out of the beam. As a result, the ions do not continuously experience the full density of the electron beam. To determine the effective electron density, n e,eff, experienced by the ions, the electron beam size, the nominal electron density n e, and the ion distribution around the beam, i.e., the so-called ion cloud, must be measured. We use imaging techniques in the extreme ultraviolet (EUV) and optical to determine these. The electron beam width is measured using 3d → 3p emission from Fe xii and xiii between 185 and 205 Å. These transitions are fast and the EUV emission occurs only within the electron beam. The measured spatial emission profile and variable electron current yield a nominal electron density range of n e ∼ 1011-1013 cm-3. We determine the size of the ion cloud using optical emission from metastable levels of ions with radiative lifetimes longer than the ion orbital periods. The resulting emission maps out the spatial distribution of the ion cloud. We find a typical electron beam radius of ∼60 μm and an ion cloud radius of ∼300 μm. These yield a spatially averaged effective electron density, n e,eff, experienced by the ions in EBIT spanning ∼ 5 × 109-5 × 1011 cm-3.


Journal of Physics: Conference Series | 2015

X-ray Measurements of Highly Charged Europium

K. Widmann; P. Beiersdorfer; G. V. Brown; N. Hell; E. W. Magee; E. Träbert

We present spectroscopic measurements of the M-shell emission of highly charged europium performed at the Livermore SuperEBIT electron beam ion trap facility using the EBIT Calorimeter Spectrometer (ECS). There is significant blending among the emission lines from the different charge states but despite the complexity of the observed spectra we have successfully identified the ten brightest n = 4 ? 3 transitions from sodium-like Eu52+ utilizing the Flexible Atomic Code (FAC). We find that the difference between the calculated and measured transition energies for these ten Eu52+ lines does not exceed 3 eV. In fact, for four of the identified lines we find agreement within the measured uncertainties. Additional comparison with semi-empirical transition-energy predictions for sodium-like ions from laser-generated plasmas is included and shows that overall the semi-empirical predicted values for the transition energies are slightly higher than the measured values, while the FAC values that didnt agree with the measured transition energies are almost 1 eV lower than the measured values.


Review of Scientific Instruments | 2014

Rare-earth neutral metal injection into an electron beam ion trap plasma

E. W. Magee; P. Beiersdorfer; G. V. Brown; N. Hell

We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The sources form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10(-7) Torr at ≥1000u2009°C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

Collaboration


Dive into the N. Hell's collaboration.

Top Co-Authors

Avatar

G. V. Brown

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

P. Beiersdorfer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. W. Magee

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Träbert

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

T. E. Lockard

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Graf

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. Widmann

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Shepherd

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. P. Arthanayaka

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge