N. I. Vinogradova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. I. Vinogradova.
Physics of Metals and Metallography | 2011
D. P. Rodionov; I. V. Gervas’eva; Yu. V. Khlebnikova; V. A. Kazantsev; N. I. Vinogradova; V. A. Sazonova
Based on the data of X-ray diffraction, dilatometry, transmission electron microscopy, and electron backscatter diffraction, the optimum regimes of heat treatment of cold-rolled (to 98.5–99%) tapes made of binary Ni-W, Ni-Cr, Ni-Fe and ternary tungsten-containing Ni-Pd-W and Ni-Cr-W alloys that are widely utilized in the world practice for the fabrication of high-temperature superconducting cables of the second generation, which make it possible to obtain a perfect cube texture. In all five alloys, the spreed of the texture upon slow heating and two-step annealing decreases by 0.2°–1.5° around the RD and by 0.1°–0.6° around the RD in comparison with the single-stage high-temperature annealing.
Physics of Metals and Metallography | 2010
D. P. Rodionov; G. A. Dosovitskii; A.R. Kaul; I. V. Gervas’eva; Yu. N. Akshentsev; V. A. Kazantsev; Yu. V. Khlebnikova; V. A. Sazonova; N. I. Vinogradova; S. V. Samoilenkov; S. N. Mudretsova; A.V. Garshev
Based on the data of X-ray diffraction, electron-backscatter diffraction, dilatometry, thermal analysis, and scanning electron microscopy, we determined the optimum regimes of heat treatment of cold-rolled tape substrates of an alloy Ni88.4Cr9.2W2.4 that permit obtaining a perfect cube texture. It has been shown that the use of two-stage annealings makes it possible to obtain in this ternary nickel alloy a cube texture in which the scatter about the rolling direction (RD) and the transverse direction (TD) of the substrates varied within 6.75°–7.20° and 4.8°–5.4°, respectively.
Physics of Metals and Metallography | 2011
N. N. Stepanova; D. I. Davydov; A. P. Nichipuruk; M. B. Rigmant; N. V. Kazantseva; N. I. Vinogradova; A. N. Pirogov; E. P. Romanov
The structure of a turbine blade made of the ChS-70V alloy has been studied after operation in an experimental regime at 880°C. A considerable change in the structural state of the alloy indicates the presence of an extremely high level of stresses in the material. During the operation, the magnetic susceptibility of the alloy increases by two orders of magnitude. The possible structure objects responsible for a change in the magnetic susceptibility are the complexes of superstructure intrinsic stacking faults inside the intermetallic phase.
Physics of Metals and Metallography | 2008
V. N. Urtsev; D. A. Mirzaev; I. L. Yakovleva; N. I. Vinogradova
Strengthening of Fe-Cu alloys during isothermal aging has been considered. The size of particles that provides a maximum strength has been found. A theory of particle growth under the conditions of continuous cooling has been developed. The cooling rate that provides the maximum contribution from age hardening has been calculated.
Physics of Metals and Metallography | 2016
N. V. Kazantseva; S. L. Demakov; A. S. Yurovskikh; N. N. Stepanova; N. I. Vinogradova; D. I. Davydov; S. V. Lepikhin
Low-temperature portion of the polythermal section for the Co–Al–W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.
Physics of Metals and Metallography | 2011
N. N. Stepanova; D. I. Davydov; D. P. Rodionov; Yu. I. Philippov; Yu. N. Akshentsev; N. I. Vinogradova; N. V. Kazantseva
Structure and strength properties of single-crystal 〈001〉 samples of Ni3Al have been studied in the as-grown and homogenized state during tensile tests in the temperature range of 1150–1250°C. At the strain rate of 1.32 mm/min (2 × 10−5 m/s), the samples are in the state of superplasticity. The basic mechanism of relaxation is dynamic recovery; in some regions of the sample, recrystallized grains are formed. At 1250°C, coarse twins are observed in the zone of fracture, which indicates the “switching on” of additional slip systems necessary to guarantee the relaxation process.
Physics of Metals and Metallography | 2016
N. V. Kazantseva; M. B. Rigmant; N. N. Stepanova; D. I. Davydov; D. A. Shishkin; N. I. Vinogradova
The structure and magnetic properties of the Ni3(Al, Fe, Cr) single crystal subjected to high-temperature tensile deformation to failure at 850–900°C have been studied. No recrystallized grains and metastable phases were found. The rupture zone of the alloy subjected to deformation (at 900°C) to the highest degree demonstrates the fragmentation accompanied by rotation of atomic layers and changes of the chemical composition in the nickel and aluminum sublattices. Magnetic studies of the alloy have shown the existence of two Curie temperatures for samples cut from the rupture zone. Samples cut away from the rupture zone exhibit no additional magnetic transitions; twines and planar stacking faults in the alloy structure. The alloy deformed to the lower degree of deformation (at 850°C) also demonstrates twins; no ferromagnetic state was found to form.
Physics of Metals and Metallography | 2016
N. V. Kazantseva; N. N. Stepanova; N. I. Vinogradova; S. L. Demakov; A. S. Yurovskikh; D. I. Davydov; D. A. Shishkin; M. B. Rigmant; E. P. Romanov
Phase transformations in the Co–9 at % Al have been investigated after slow furnace cooling. It has been shown that the structure and phase composition of the alloy after slow cooling do not correspond to the equilibrium phase diagram of the alloy of this chemical composition. It has been established that the α → ε martensitic transformation does not require overcooling and occurs even during a slow cooling of the alloy. It has been found that the formation of 4H modulated martensite is a specific feature of the binary alloys of cobalt and is not connected with the rate of their cooling. The Curie temperatures for the B2, α, and ε phases have been determined.
Physics of Metals and Metallography | 2015
D. I. Davydov; N. I. Vinogradova; N. V. Kazantseva; N. N. Stepanova
The structural tests of turbine blades made from two commercial high-temperature nickel-based alloys were carried out after their test operation at elevated temperature and stresses. Both alloys contain 40% of a hardening intermetallic phase and the upper operating temperature of both alloys is limited to 900°C, but they have a different resistance to high-temperature deformation.
Physics of Metals and Metallography | 2018
N. V. Kazantseva; D. I. Davydov; I. V. Ezhov; D. A. Shishkin; N. I. Vinogradova
The structure and magnetic properties of an Ni3(Al, Fe) single crystal after high-temperature rolling deformation have been studied. It has been shown that high-temperature rolling deformation induces longitudinal bending in Ni3(Al, Fe), which is accompanied by the nonuniform distribution of stresses along the length of the sample. It has been found that longitudinal bending leads to change in either the mechanical or physical properties of the metal. Dynamic recrystallization has been found to occur at high degrees of deformation (starting at 40%). Local change in the distance between nickel and aluminum atoms, as well as the chemical composition, that takes place in the bending zones (distortions) of a crystal lattice of Ni3Al intermetallic compound is accompanied by change in the saturation magnetization and Curie temperature.